Lipschitz extensions of maps between Heisenberg groups
Data(s) |
2016
|
---|---|
Resumo |
Let $\H^n$ be the Heisenberg group of topological dimension 2n+1 . We prove that if n is odd, the pair of metric spaces $(\H^n, \H^n)$ does not have the Lipschitz extension property. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/81137/1/lip.pdf Balogh, Zoltan; Lang, Urs; Pansu, Pierre (2016). Lipschitz extensions of maps between Heisenberg groups (In Press). Annales de l'Institut Fourier Association des Annales de l'Institut Fourier doi:10.7892/boris.81137 urn:issn:1777-5310 |
Idioma(s) |
eng |
Publicador |
Association des Annales de l'Institut Fourier |
Relação |
http://boris.unibe.ch/81137/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Balogh, Zoltan; Lang, Urs; Pansu, Pierre (2016). Lipschitz extensions of maps between Heisenberg groups (In Press). Annales de l'Institut Fourier Association des Annales de l'Institut Fourier |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion PeerReviewed |