Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces


Autoria(s): Balogh, Zoltán M.; Tyson, Jeremy T.; Wildrick, Kevin
Data(s)

16/07/2013

Resumo

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/41968/1/1301.6013v2.pdf

http://boris.unibe.ch/41968/7/__ubnetapp02_user%24_brinksma_Downloads_dimension%20distortin.pdf

Balogh, Zoltán M.; Tyson, Jeremy T.; Wildrick, Kevin (2013). Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces. Analysis and Geometry in Metric Spaces, 1, pp. 232-254. Versita 10.2478/agms-2013-0005 <http://dx.doi.org/10.2478/agms-2013-0005>

doi:10.7892/boris.41968

info:doi:10.2478/agms-2013-0005

urn:issn:2299-3274

Idioma(s)

eng

Publicador

Versita

Relação

http://boris.unibe.ch/41968/

http://dx.doi.org/10.2478/agms-2013-0005

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/openAccess

Fonte

Balogh, Zoltán M.; Tyson, Jeremy T.; Wildrick, Kevin (2013). Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces. Analysis and Geometry in Metric Spaces, 1, pp. 232-254. Versita 10.2478/agms-2013-0005 <http://dx.doi.org/10.2478/agms-2013-0005>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed