Harmonic Oscillator in a 1D or 2D Cavity with General Perfectly Reflecting Walls


Autoria(s): Al-Hashimi, Munir H.
Data(s)

2013

Resumo

We investigate the simple harmonic oscillator in a 1-d box, and the 2-d isotropic harmonic oscillator problem in a circular cavity with perfectly reflecting boundary conditions. The energy spectrum has been calculated as a function of the self-adjoint extension parameter. For sufficiently negative values of the self-adjoint extension parameter, there are bound states localized at the wall of the box or the cavity that resonate with the standard bound states of the simple harmonic oscillator or the isotropic oscillator. A free particle in a circular cavity has been studied for the sake of comparison. This work represents an application of the recent generalization of the Heisenberg uncertainty relation related to the theory of self-adjoint extensions in a finite volume.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/46306/1/munirpaper.pdf

http://boris.unibe.ch/46306/8/Isotropic%20paper2.pdf

Al-Hashimi, Munir H. (2013). Harmonic Oscillator in a 1D or 2D Cavity with General Perfectly Reflecting Walls. Molecular Physics, 111(2), pp. 225-241. Taylor & Francis 10.1080/00268976.2012.716526 <http://dx.doi.org/10.1080/00268976.2012.716526>

doi:10.7892/boris.46306

info:doi:10.1080/00268976.2012.716526

urn:issn:1362-3028

Idioma(s)

eng

Publicador

Taylor & Francis

Relação

http://boris.unibe.ch/46306/

Direitos

info:eu-repo/semantics/restrictedAccess

info:eu-repo/semantics/openAccess

Fonte

Al-Hashimi, Munir H. (2013). Harmonic Oscillator in a 1D or 2D Cavity with General Perfectly Reflecting Walls. Molecular Physics, 111(2), pp. 225-241. Taylor & Francis 10.1080/00268976.2012.716526 <http://dx.doi.org/10.1080/00268976.2012.716526>

Palavras-Chave #530 Physics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed