Harmonic Oscillator in a 1D or 2D Cavity with General Perfectly Reflecting Walls
Data(s) |
2013
|
---|---|
Resumo |
We investigate the simple harmonic oscillator in a 1-d box, and the 2-d isotropic harmonic oscillator problem in a circular cavity with perfectly reflecting boundary conditions. The energy spectrum has been calculated as a function of the self-adjoint extension parameter. For sufficiently negative values of the self-adjoint extension parameter, there are bound states localized at the wall of the box or the cavity that resonate with the standard bound states of the simple harmonic oscillator or the isotropic oscillator. A free particle in a circular cavity has been studied for the sake of comparison. This work represents an application of the recent generalization of the Heisenberg uncertainty relation related to the theory of self-adjoint extensions in a finite volume. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/46306/1/munirpaper.pdf http://boris.unibe.ch/46306/8/Isotropic%20paper2.pdf Al-Hashimi, Munir H. (2013). Harmonic Oscillator in a 1D or 2D Cavity with General Perfectly Reflecting Walls. Molecular Physics, 111(2), pp. 225-241. Taylor & Francis 10.1080/00268976.2012.716526 <http://dx.doi.org/10.1080/00268976.2012.716526> doi:10.7892/boris.46306 info:doi:10.1080/00268976.2012.716526 urn:issn:1362-3028 |
Idioma(s) |
eng |
Publicador |
Taylor & Francis |
Relação |
http://boris.unibe.ch/46306/ |
Direitos |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/openAccess |
Fonte |
Al-Hashimi, Munir H. (2013). Harmonic Oscillator in a 1D or 2D Cavity with General Perfectly Reflecting Walls. Molecular Physics, 111(2), pp. 225-241. Taylor & Francis 10.1080/00268976.2012.716526 <http://dx.doi.org/10.1080/00268976.2012.716526> |
Palavras-Chave | #530 Physics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |