Heisenberg symmetry and hypermultiplet manifolds
Data(s) |
26/02/2016
|
---|---|
Resumo |
We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg U (1). We finally discuss the realization of the latter by gauging appropriate Sp(2, 4) generators in N = 2 conformal supergravity. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/80048/1/1-s2.0-S0550321316000651-main.pdf Antoniadis, Ignatios; Derendinger, Jean-Pierre; Marios Petropoulos, P.; Siampos, Konstadinos (2016). Heisenberg symmetry and hypermultiplet manifolds. Nuclear physics. B, 905, pp. 293-312. North Holland 10.1016/j.nuclphysb.2016.02.021 <http://dx.doi.org/10.1016/j.nuclphysb.2016.02.021> doi:10.7892/boris.80048 info:doi:10.1016/j.nuclphysb.2016.02.021 urn:issn:0550-3213 |
Idioma(s) |
eng |
Publicador |
North Holland |
Relação |
http://boris.unibe.ch/80048/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Antoniadis, Ignatios; Derendinger, Jean-Pierre; Marios Petropoulos, P.; Siampos, Konstadinos (2016). Heisenberg symmetry and hypermultiplet manifolds. Nuclear physics. B, 905, pp. 293-312. North Holland 10.1016/j.nuclphysb.2016.02.021 <http://dx.doi.org/10.1016/j.nuclphysb.2016.02.021> |
Palavras-Chave | #530 Physics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |