48 resultados para Unified field theories


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decades mean-field models, in which large-scale magnetic fields and differential rotation arise due to the interaction of rotation and small-scale turbulence, have been enormously successful in reproducing many of the observed features of the Sun. In the meantime, new observational techniques, most prominently helioseismology, have yielded invaluable information about the interior of the Sun. This new information, however, imposes strict conditions on mean-field models. Moreover, most of the present mean-field models depend on knowledge of the small-scale turbulent effects that give rise to the large-scale phenomena. In many mean-field models these effects are prescribed in ad hoc fashion due to the lack of this knowledge. With large enough computers it would be possible to solve the MHD equations numerically under stellar conditions. However, the problem is too large by several orders of magnitude for the present day and any foreseeable computers. In our view, a combination of mean-field modelling and local 3D calculations is a more fruitful approach. The large-scale structures are well described by global mean-field models, provided that the small-scale turbulent effects are adequately parameterized. The latter can be achieved by performing local calculations which allow a much higher spatial resolution than what can be achieved in direct global calculations. In the present dissertation three aspects of mean-field theories and models of stars are studied. Firstly, the basic assumptions of different mean-field theories are tested with calculations of isotropic turbulence and hydrodynamic, as well as magnetohydrodynamic, convection. Secondly, even if the mean-field theory is unable to give the required transport coefficients from first principles, it is in some cases possible to compute these coefficients from 3D numerical models in a parameter range that can be considered to describe the main physical effects in an adequately realistic manner. In the present study, the Reynolds stresses and turbulent heat transport, responsible for the generation of differential rotation, were determined along the mixing length relations describing convection in stellar structure models. Furthermore, the alpha-effect and magnetic pumping due to turbulent convection in the rapid rotation regime were studied. The third area of the present study is to apply the local results in mean-field models, which task we start to undertake by applying the results concerning the alpha-effect and turbulent pumping in mean-field models describing the solar dynamo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gravitaation kvanttiteorian muotoilu on ollut teoreettisten fyysikkojen tavoitteena kvanttimekaniikan synnystä lähtien. Kvanttimekaniikan soveltaminen korkean energian ilmiöihin yleisen suhteellisuusteorian viitekehyksessä johtaa aika-avaruuden koordinaattien operatiiviseen ei-kommutoivuuteen. Ei-kommutoivia aika-avaruuden geometrioita tavataan myös avointen säikeiden säieteorioiden tietyillä matalan energian rajoilla. Ei-kommutoivan aika-avaruuden gravitaatioteoria voisi olla yhteensopiva kvanttimekaniikan kanssa ja se voisi mahdollistaa erittäin lyhyiden etäisyyksien ja korkeiden energioiden prosessien ei-lokaaliksi uskotun fysiikan kuvauksen, sekä tuottaa yleisen suhteellisuusteorian kanssa yhtenevän teorian pitkillä etäisyyksillä. Tässä työssä tarkastelen gravitaatiota Poincarén symmetrian mittakenttäteoriana ja pyrin yleistämään tämän näkemyksen ei-kommutoiviin aika-avaruuksiin. Ensin esittelen Poincarén symmetrian keskeisen roolin relativistisessa fysiikassa ja sen kuinka klassinen gravitaatioteoria johdetaan Poincarén symmetrian mittakenttäteoriana kommutoivassa aika-avaruudessa. Jatkan esittelemällä ei-kommutoivan aika-avaruuden ja kvanttikenttäteorian muotoilun ei-kommutoivassa aika-avaruudessa. Mittasymmetrioiden lokaalin luonteen vuoksi tarkastelen huolellisesti mittakenttäteorioiden muotoilua ei-kommutoivassa aika-avaruudessa. Erityistä huomiota kiinnitetään näiden teorioiden vääristyneeseen Poincarén symmetriaan, joka on ei-kommutoivan aika-avaruuden omaama uudentyyppinen kvanttisymmetria. Seuraavaksi tarkastelen ei-kommutoivan gravitaatioteorian muotoilun ongelmia ja niihin kirjallisuudessa esitettyjä ratkaisuehdotuksia. Selitän kuinka kaikissa tähänastisissa lähestymistavoissa epäonnistutaan muotoilla kovarianssi yleisten koordinaattimunnosten suhteen, joka on yleisen suhteellisuusteorian kulmakivi. Lopuksi tutkin mahdollisuutta yleistää vääristynyt Poincarén symmetria lokaaliksi mittasymmetriaksi --- gravitaation ei-kommutoivan mittakenttäteorian saavuttamisen toivossa. Osoitan, että tällaista yleistystä ei voida saavuttaa vääristämällä Poincarén symmetriaa kovariantilla twist-elementillä. Näin ollen ei-kommutoivan gravitaation ja vääristyneen Poincarén symmetrian tutkimuksessa tulee jatkossa keskittyä muihin lähestymistapoihin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-dependent backgrounds in string theory provide a natural testing ground for physics concerning dynamical phenomena which cannot be reliably addressed in usual quantum field theories and cosmology. A good, tractable example to study is the rolling tachyon background, which describes the decay of an unstable brane in bosonic and supersymmetric Type II string theories. In this thesis I use boundary conformal field theory along with random matrix theory and Coulomb gas thermodynamics techniques to study open and closed string scattering amplitudes off the decaying brane. The calculation of the simplest example, the tree-level amplitude of n open strings, would give us the emission rate of the open strings. However, even this has been unknown. I will organize the open string scattering computations in a more coherent manner and will argue how to make further progress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superfluidity is perhaps one of the most remarkable observed macroscopic quantum effect. Superfluidity appears when a macroscopic number of particles occupies a single quantum state. Using modern experimental techniques one dark solitons) and vortices. There is a large literature on theoretical work studying the properties of such solitons using semiclassical methods. This thesis describes an alternative method for the study of superfluid solitons. The method used here is a holographic duality between a class of quantum field theories and gravitational theories. The classical limit of the gravitational system maps into a strong coupling limit of the quantum field theory. We use a holographic model of superfluidity to study solitons in these systems. One particularly appealing feature of this technique is that it allows us to take into account finite temperature effects in a large range of temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern elementary particle physics is based on quantum field theories. Currently, our understanding is that, on the one hand, the smallest structures of matter and, on the other hand, the composition of the universe are based on quantum field theories which present the observable phenomena by describing particles as vibrations of the fields. The Standard Model of particle physics is a quantum field theory describing the electromagnetic, weak, and strong interactions in terms of a gauge field theory. However, it is believed that the Standard Model describes physics properly only up to a certain energy scale. This scale cannot be much larger than the so-called electroweak scale, i.e., the masses of the gauge fields W^+- and Z^0. Beyond this scale, the Standard Model has to be modified. In this dissertation, supersymmetric theories are used to tackle the problems of the Standard Model. For example, the quadratic divergences, which plague the Higgs boson mass in the Standard model, cancel in supersymmetric theories. Experimental facts concerning the neutrino sector indicate that the lepton number is violated in Nature. On the other hand, the lepton number violating Majorana neutrino masses can induce sneutrino-antisneutrino oscillations in any supersymmetric model. In this dissertation, I present some viable signals for detecting the sneutrino-antisneutrino oscillation at colliders. At the e-gamma collider (at the International Linear Collider), the numbers of the electron-sneutrino-antisneutrino oscillation signal events are quite high, and the backgrounds are quite small. A similar study for the LHC shows that, even though there are several backrounds, the sneutrino-antisneutrino oscillations can be detected. A useful asymmetry observable is introduced and studied. Usually, the oscillation probability formula where the sneutrinos are produced at rest is used. However, here, we study a general oscillation probability. The Lorentz factor and the distance at which the measurement is made inside the detector can have effects, especially when the sneutrino decay width is very small. These effects are demonstrated for a certain scenario at the LHC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall aim of this dissertation was to study the public's preferences for forest regeneration fellings and field afforestations, as well as to find out the relations of these preferences to landscape management instructions, to ecological healthiness, and to the contemporary theories for predicting landscape preferences. This dissertation includes four case studies in Finland, each based on the visualization of management options and surveys. Guidelines for improving the visual quality of forest regeneration and field afforestation are given based on the case studies. The results show that forest regeneration can be connected to positive images and memories when the regeneration area is small and some time has passed since the felling. Preferences may not depend only on the management alternative itself but also on the viewing distance, viewing point, and the scene in which the management options are implemented. The current Finnish forest landscape management guidelines as well as the ecological healthiness of the studied options are to a large extent compatible with the public's preferences. However, there are some discrepancies. For example, the landscape management instructions as well as ecological hypotheses suggest that the retention trees need to be left in groups, whereas people usually prefer individually located retention trees to those trees in groups. Information and psycho-evolutionary theories provide some possible explanations for people's preferences for forest regeneration and field afforestation, but the results cannot be consistently explained by these theories. The preferences of the different stakeholder groups were very similar. However, the preference ratings of the groups that make their living from forest - forest owners and forest professionals - slightly differed from those of the others. These results provide support for the assumptions that preferences are largely consistent at least within one nation, but that knowledge and a reference group may also influence preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Einstein's general relativity is a classical theory of gravitation: it is a postulate on the coupling between the four-dimensional, continuos spacetime and the matter fields in the universe, and it yields their dynamical evolution. It is believed that general relativity must be replaced by a quantum theory of gravity at least at extremely high energies of the early universe and at regions of strong curvature of spacetime, cf. black holes. Various attempts to quantize gravity, including conceptually new models such as string theory, have suggested that modification to general relativity might show up even at lower energy scales. On the other hand, also the late time acceleration of the expansion of the universe, known as the dark energy problem, might originate from new gravitational physics. Thus, although there has been no direct experimental evidence contradicting general relativity so far - on the contrary, it has passed a variety of observational tests - it is a question worth asking, why should the effective theory of gravity be of the exact form of general relativity? If general relativity is modified, how do the predictions of the theory change? Furthermore, how far can we go with the changes before we are face with contradictions with the experiments? Along with the changes, could there be new phenomena, which we could measure to find hints of the form of the quantum theory of gravity? This thesis is on a class of modified gravity theories called f(R) models, and in particular on the effects of changing the theory of gravity on stellar solutions. It is discussed how experimental constraints from the measurements in the Solar System restrict the form of f(R) theories. Moreover, it is shown that models, which do not differ from general relativity at the weak field scale of the Solar System, can produce very different predictions for dense stars like neutron stars. Due to the nature of f(R) models, the role of independent connection of the spacetime is emphasized throughout the thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The open development model of software production has been characterized as the future model of knowledge production and distributed work. Open development model refers to publicly available source code ensured by an open source license, and the extensive and varied distributed participation of volunteers enabled by the Internet. Contemporary spokesmen of open source communities and academics view open source development as a new form of volunteer work activity characterized by hacker ethic and bazaar governance . The development of the Linux operating system is perhaps the best know example of such an open source project. It started as an effort by a user-developer and grew quickly into a large project with hundreds of user-developer as contributors. However, in hybrids , in which firms participate in open source projects oriented towards end-users, it seems that most users do not write code. The OpenOffice.org project, initiated by Sun Microsystems, in this study represents such a project. In addition, the Finnish public sector ICT decision-making concerning open source use is studied. The purpose is to explore the assumptions, theories and myths related to the open development model by analysing the discursive construction of the OpenOffice.org community: its developers, users and management. The qualitative study aims at shedding light on the dynamics and challenges of community construction and maintenance, and related power relations in hybrid open source, by asking two main research questions: How is the structure and membership constellation of the community, specifically the relation between developers and users linguistically constructed in hybrid open development? What characterizes Internet-mediated virtual communities and how can they be defined? How do they differ from hierarchical forms of knowledge production on one hand and from traditional volunteer communities on the other? The study utilizes sociological, psychological and anthropological concepts of community for understanding the connection between the real and the imaginary in so-called virtual open source communities. Intermediary methodological and analytical concepts are borrowed from discourse and rhetorical theories. A discursive-rhetorical approach is offered as a methodological toolkit for studying texts and writing in Internet communities. The empirical chapters approach the problem of community and its membership from four complementary points of views. The data comprises mailing list discussion, personal interviews, web page writings, email exchanges, field notes and other historical documents. The four viewpoints are: 1) the community as conceived by volunteers 2) the individual contributor s attachment to the project 3) public sector organizations as users of open source 4) the community as articulated by the community manager. I arrive at four conclusions concerning my empirical studies (1-4) and two general conclusions (5-6). 1) Sun Microsystems and OpenOffice.org Groupware volunteers failed in developing necessary and sufficient open code and open dialogue to ensure collaboration thus splitting the Groupware community into volunteers we and the firm them . 2) Instead of separating intrinsic and extrinsic motivations, I find that volunteers unique patterns of motivations are tied to changing objects and personal histories prior and during participation in the OpenOffice.org Lingucomponent project. Rather than seeing volunteers as a unified community, they can be better understood as independent entrepreneurs in search of a collaborative community . The boundaries between work and hobby are blurred and shifting, thus questioning the usefulness of the concept of volunteer . 3) The public sector ICT discourse portrays a dilemma and tension between the freedom to choose, use and develop one s desktop in the spirit of open source on one hand and the striving for better desktop control and maintenance by IT staff and user advocates, on the other. The link between the global OpenOffice.org community and the local end-user practices are weak and mediated by the problematic IT staff-(end)user relationship. 4) Authoring community can be seen as a new hybrid open source community-type of managerial practice. The ambiguous concept of community is a powerful strategic tool for orienting towards multiple real and imaginary audiences as evidenced in the global membership rhetoric. 5) The changing and contradictory discourses of this study show a change in the conceptual system and developer-user relationship of the open development model. This change is characterized as a movement from hacker ethic and bazaar governance to more professionally and strategically regulated community. 6) Community is simultaneously real and imagined, and can be characterized as a runaway community . Discursive-action can be seen as a specific type of online open source engagement. Hierarchies and structures are created through discursive acts. Key words: Open Source Software, open development model, community, motivation, discourse, rhetoric, developer, user, end-user

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissertation analyzes and elaborates upon the changing map of U.S. ethno-racial formation from the vantage point of North American Studies, multi-disciplinary cultural studies, and the criticism of visual culture. The focus is on four contemporary Mexican American (Chicana) women photographers, whose art production is discussed, on the one hand, in the context of the Euro-American history of photographic genres and, on the other hand, in the context of so-called decolonizing cultural and academic discourses produced by Mexican Americans themselves. The manuscript consists of two parts. Part I outlines the theoretical and methodological domain of the study, positioning it in the interstices of American studies, European postmodern criticism, postcolonial feminist theory, and the theories of visual culture, particularly of art photography. In addition, the main issues and paradigms of Chicano Studies (Mexican American ethnic studies) are introduced. Part II consists of seven essays, each of which discusses rather independently a particular photographic work or a series of photographs, formulating and defending arguments about their meaning, position in the history of photographic genres, and their cultural and socio-political significance. The study closes with a discussion about ethno-racial identity formation and the role of Chicana photography therein - in embodying and reproducing new subjectivities, alternative categories of knowledge, and open ended historical narratives. It is argued that, symbolically, the "Wild Zone" of gendered and race-specific knowledge becomes associated with the body of the mother, a recurrent image in Chicana art works under discussion. Embedded in this image, the construction of an alternative notion of a family thus articulates the parameters of a matrifocal ethno-racial community unified by the proliferation of differences rather than by conformities typical of nationalistic ideologies. While focusing on art photography, the study as a whole simultaneously constructs, from a European vantage point, a "thick" description of Mexican American history, identities, communities, cultural practices, and self-representations about which very little is known in Finland.