17 resultados para Transition form factors
Resumo:
QCD factorization in the Bjorken limit allows to separate the long-distance physics from the hard subprocess. At leading twist, only one parton in each hadron is coherent with the hard subprocess. Higher twist effects increase as one of the active partons carries most of the longitudinal momentum of the hadron, x -> 1. In the Drell-Yan process \pi N -> \mu^- mu^+ + X, the polarization of the virtual photon is observed to change to longitudinal when the photon carries x_F > 0.6 of the pion. I define and study the Berger-Brodsky limit of Q^2 -> \infty with Q^2(1-x) fixed. A new kind of factorization holds in the Drell-Yan process in this limit, in which both pion valence quarks are coherent with the hard subprocess, the virtual photon is longitudinal rather than transverse, and the cross section is proportional to a multiparton distribution. Generalized parton distributions contain information on the longitudinal momentum and transverse position densities of partons in a hadron. Transverse charge densities are Fourier transforms of the electromagnetic form factors. I discuss the application of these methods to the QED electron, studying the form factors, charge densities and spin distributions of the leading order |e\gamma> Fock state in impact parameter and longitudinal momentum space. I show how the transverse shape of any virtual photon induced process, \gamma^*(q)+i -> f, may be measured. Qualitative arguments concerning the size of such transitions have been previously made in the literature, but without a precise analysis. Properly defined, the amplitudes and the cross section in impact parameter space provide information on the transverse shape of the transition process.
Resumo:
The number of drug substances in formulation development in the pharmaceutical industry is increasing. Some of these are amorphous drugs and have glass transition below ambient temperature, and thus they are usually difficult to formulate and handle. One reason for this is the reduced viscosity, related to the stickiness of the drug, that makes them complicated to handle in unit operations. Thus, the aim in this thesis was to develop a new processing method for a sticky amorphous model material. Furthermore, model materials were characterised before and after formulation, using several characterisation methods, to understand more precisely the prerequisites for physical stability of amorphous state against crystallisation. The model materials used were monoclinic paracetamol and citric acid anhydrate. Amorphous materials were prepared by melt quenching or by ethanol evaporation methods. The melt blends were found to have slightly higher viscosity than the ethanol evaporated materials. However, melt produced materials crystallised more easily upon consecutive shearing than ethanol evaporated materials. The only material that did not crystallise during shearing was a 50/50 (w/w, %) blend regardless of the preparation method and it was physically stable at least two years in dry conditions. Shearing at varying temperatures was established to measure the physical stability of amorphous materials in processing and storage conditions. The actual physical stability of the blends was better than the pure amorphous materials at ambient temperature. Molecular mobility was not related to the physical stability of the amorphous blends, observed as crystallisation. Molecular mobility of the 50/50 blend derived from a spectral linewidth as a function of temperature using solid state NMR correlated better with the molecular mobility derived from a rheometer than that of differential scanning calorimetry data. Based on the results obtained, the effect of molecular interactions, thermodynamic driving force and miscibility of the blends are discussed as the key factors to stabilise the blends. The stickiness was found to be affected glass transition and viscosity. Ultrasound extrusion and cutting were successfully tested to increase the processability of sticky material. Furthermore, it was found to be possible to process the physically stable 50/50 blend in a supercooled liquid state instead of a glassy state. The method was not found to accelerate the crystallisation. This may open up new possibilities to process amorphous materials that are otherwise impossible to manufacture into solid dosage forms.
Resumo:
Heart transplantation is the only therapeutic modality for many end-stage heart diseases but poor long-term survival remains a challenging problem. This is mainly due to the development of cardiac allograft arteriosclerosis (TxCAD) that is an accelerated form of coronary artery disease. Both traditional cardiovascular and transplantation-related risk factors for TxCAD have been identified but options for therapy are limited. TxCAD involves dysfunction of cardiac allograft vascular cells. Activated endothelial cells (EC) regulate allograft inflammation and secrete smooth muscle cell (SMC) growth factors. In turn, SMC and their progenitors invade the intima of the injured vessels and occlude the affected coronary arteries. Different vascular growth factors have to be delicately regulated in normal vascular development. In the present study, experimental heterotopic transplantation models were used to study the role of angiogenic and pro-inflammatory vascular endothelial growth factor (VEGF), EC growth factor angiopoietin (Ang), and SMC mitogen platelet-derived growth factor (PDGF) in the development of TxCAD. Pharmacological and gene transfer approaches were used to target these growth factors and to assess their therapeutic potential. This study shows that alloimmune response in heart transplants upregulates VEGF expression, and induces allograft angiogenesis that involves donor-derived primitive EC. Intracoronary adenoviral VEGF gene transfer increased macrophage infiltration, intimal angiogenesis and TxCAD. VEGF inhibition with PTK787 decreased allograft inflammation and TxCAD, and simultaneous PDGF inhibition with imatinib further decreased TxCAD. Specific inhibition of two VEGF-receptors (VEGFR) decreased allograft inflammation and TxCAD, and VEGFR-2 inhibition normalized the density of primitive and mature capillaries in the allografts. Adenovirus-mediated transient Ang1 expression in the allograft had anti-inflammatory and anti-arteriosclerotic effects. Adeno-associated virus (AAV)-mediated prolonged Ang1 or Ang2 expression had similar anti-inflammatory effects. However, AAV-Ang1 activated allograft SMC whereas AAV-Ang2 had no effects on SMC activation and decreased the development of TxCAD. These studies indicate an interplay of inflammation, angiogenesis and arteriosclerosis in cardiac allografts, and show that vascular growth factors are important regulators in the process. Also, VEGF inhibition, PDGF inhibition and angiopoietin therapy with clinically-relevant pharmacological agents or novel gene therapy approaches may counteract vascular dysfunction in cardiac allografts, and have beneficial effects on the survival of heart transplant patients in the future.
Resumo:
Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.
Resumo:
In Finland, peat harvesting sites are utilized down almost to the mineral soil. In this situation the properties of mineral subsoil are likely to have considerable influence on the suitability for the various after-use forms. The aims of this study were to recognize the chemical and physical properties of mineral subsoils possibly limiting the after-use of cut-over peatlands, to define a minimum practice for mineral subsoil studies and to describe the role of different geological areas. The future percentages of the different after-use forms were predicted, which made it possible to predict also carbon accumulation in this future situation. Mineral subsoils of 54 different peat production areas were studied. Their general features and grain size distribution was analysed. Other general items studied were pH, electrical conductivity, organic matter, water soluble nutrients (P, NO3-N, NH4-N, S and Fe) and exchangeable nutrients (Ca, Mg and K). In some cases also other elements were analysed. In an additional case study carbon accumulation effectiveness before the intervention was evaluated on three sites in Oulu area (representing sites typically considered for peat production). Areas with relatively sulphur rich mineral subsoil and pool-forming areas with very fine and compact mineral subsoil together covered approximately 1/5 of all areas. These areas were unsuitable for commercial use. They were recommended for example for mire regeneration. Another approximate 1/5 of the areas included very coarse or very fine sediments. Commercial use of these areas would demand special techniques - like using the remaining peat layer for compensating properties missing from the mineral subsoil. One after-use form was seldom suitable for one whole released peat production area. Three typical distribution patterns (models) of different mineral subsoils within individual peatlands were found. 57 % of studied cut-over peatlands were well suited for forestry. In a conservative calculation 26% of the areas were clearly suitable for agriculture, horticulture or energy crop production. If till without large boulders was included, the percentage of areas suitable to field crop production would be 42 %. 9-14 % of all areas were well suitable for mire regeneration or bird sanctuaries, but all areas were considered possible for mire regeneration with correct techniques. Also another 11 % was recommended for mire regeneration to avoid disturbing the mineral subsoil, so total 20-25 % of the areas would be used for rewetting. High sulphur concentrations and acidity were typical to the areas below the highest shoreline of the ancient Litorina sea and Lake Ladoga Bothnian Bay zone. Also differences related to nutrition were detected. In coarse sediments natural nutrient concentration was clearly higher in Lake Ladoga Bothnian Bay zone and in the areas of Svecokarelian schists and gneisses, than in Granitoid area of central Finland and in Archaean gneiss areas. Based on this study the recommended minimum analysis for after-use planning was for pH, sulphur content and fine material (<0.06 mm) percentage. Nutrition capacity could be analysed using the natural concentrations of calcium, magnesium and potassium. Carbon accumulation scenarios were developed based on the land-use predictions. These scenarios were calculated for areas in peat production and the areas released from peat production (59300 ha + 15 671 ha). Carbon accumulation of the scenarios varied between 0.074 and 0.152 million t C a-1. In the three peatlands considered for peat production the long term carbon accumulation rates varied between 13 and 24 g C m-2 a-1. The natural annual carbon accumulation had been decreasing towards the time of possible intervention.
Resumo:
Trimeric autotransporters are a family of secreted outer membrane proteins in Gram-negative bacteria. These obligate homotrimeric proteins share a conserved C-terminal region, termed the translocation unit. This domain consists of an integral membrane β-barrel anchor and associated α-helices which pass through the pore of the barrel. The α-helices link to the extracellular portion of the protein, the passenger domain. Autotransportation refers to the way in which the passenger domain is secreted into the extracellular space. It appears that the translocation unit mediates the transport of the passenger domain across the outer membrane, and no external factors, such as ATP, ion gradients nor other proteins, are required. The passenger domain of autotransporters contains the specific activities of each protein. These are usually related to virulence. In trimeric autotransporters, the main function of the proteins is to act as adhesins. One such protein is the Yersinia adhesin YadA, found in enteropathogenic species of Yersinia. The main activity of YadA from Y. enterocolitica is to bind collagen, and it also mediates adhesion to other molecules of the extracellular matrix. In addition, YadA is involved in serum resistance, phagocytosis resistance, binding to epithelial cells and autoagglutination. YadA is an essential virulence factor of Y. enterocolitica, and removal of this protein from the bacteria leads to avirulence. In this study, I investigated the YadA-collagen interaction by studying the binding of YadA to collagen-mimicking peptides by several biochemical and biophysical methods. YadA bound as tightly to the triple-helical model peptide (Pro-Hyp-Gly)10 as to native collagen type I. However, YadA failed to bind a similar peptide that does not form a collagenous triple helix. As (Pro-Hyp-Gly)10 does not contain a specific sequence, we concluded that a triple-helical conformation is necessary for YadA binding, but no specific sequence is required. To further investigate binding determinants for YadA in collagens, I examined the binding of YadA to a library of collagen-mimicking peptides that span the entire triple-helical sequences of human collagens type II and type III. YadA bound promiscuously to many but not all peptides, indicating that a triple-helical conformation alone is not sufficient for binding. The high-binding peptides did not share a clear binding motif, but these peptides were rich in hydroxyproline residues and contained a low number of charged residues. YadA thus binds collagens without sequence specificity. This strategy of promiscuous binding may be advantageous for pathogenic bacteria. The Eib proteins from Escherichia coli are immunoglobulin (Ig)-binding homologues of YadA. I showed conclusively that recombinant EibA, EibC, EibD and EibF bind to IgG Fc. I crystallised a fragment of the passenger domain of EibD, which binds IgA in addition to IgG. The structure has a YadA-like head domain and an extended coiled-coil stalk. The top half of the coiled-coil is right-handed with hendecad periodicity, whereas the lower half is a canonical left-handed coiled-coil. At the transition from right- to left-handedness, a small β-sheet protrudes from each monomer. I was able to map the binding regions for IgG and IgA using truncations and site-directed mutagenesis to the coiled-coil stalk and identified residues critical for Ig binding.
Resumo:
Angiosperms represent a huge diversity in floral structures. Thus, they provide an attractive target for comparative developmental genetics studies. Research on flower development has focused on few main model plants, and studies on these species have revealed the importance of transcription factors, such as MADS-box and TCP genes, for regulating the floral form. The MADS-box genes determine floral organ identities, whereas the TCP genes are known to regulate flower shape and the number of floral organs. In this study, I have concentrated on these two gene families and their role in regulating flower development in Gerbera hybrida, a species belonging to the large sunflower family (Asteraceae). The Gerbera inflorescence is comprised of hundreds of tightly clustered flowers that differ in their size, shape and function according to their position in the inflorescence. The presence of distinct flower types tells Gerbera apart from the common model species that bear only single kinds of flowers in their inflorescences. The marginally located ray flowers have large bilaterally symmetrical petals and non-functional stamens. The centrally located disc flowers are smaller, have less pronounced bilateral symmetry and carry functional stamens. Early stages of flower development were studied in Gerbera to understand the differentiation of flower types better. After morphological analysis, we compared gene expression between ray and disc flowers to reveal transcriptional differences in flower types. Interestingly, MADS-box genes showed differential expression, suggesting that they might take part in defining flower types by forming flower-type-specific regulatory complexes. Functional analysis of a CYCLOIDEA-like TCP gene GhCYC2 provided evidence that TCP transcription factors are involved in flower type differentiation in Gerbera. The expression of GhCYC2 is ray-flower-specific at early stages of development and activated only later in disc flowers. Overexpression of GhCYC2 in transgenic Gerbera-lines causes disc flowers to obtain ray-flower-like characters, such as elongated petals and disrupted stamen development. The expression pattern and transgenic phenotypes further suggest that GhCYC2 may shape ray flowers by promoting organ fusion. Cooperation of GhCYC2 with other Gerbera CYC-like TCP genes is most likely needed for proper flower type specification, and by this means for shaping the elaborate inflorescence structure. Gerbera flower development was also approached by characterizing B class MADS-box genes, which in the main model plants are known regulators of petal and stamen identity. The four Gerbera B class genes were phylogenetically grouped into three clades; GGLO1 into the PI/GLO clade, GDEF2 and GDEF3 into the euAP3 clade and GDEF1 into the TM6 clade. Putative orthologs for GDEF2 and GDEF3 were identified in other Asteraceae species, which suggests that they appeared through an Asteraceae-specific duplication. Functional analyses indicated that GGLO1 and GDEF2 perform conventional B-function as they determine petal and stamen identities. Our studies on GDEF1 represent the first functional analysis of a TM6-like gene outside the Solanaceae lineage and provide further evidence for the role of TM6 clade members in specifying stamen development. Overall, the Gerbera B class genes showed both commonalities and diversifications with the conventional B-function described in the main model plants.
Resumo:
The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.
Resumo:
The ageing of the labour force and falling employment rates have forced policy makers in industrialized countries to find means of increasing the well-being of older workers and of lengthening their work careers. The main objective of this thesis was to study longitudinally how health, functional capacity, subjective well-being, and lifestyle change as people grow older, and what effect retirement has on these factors and on their relationships. The present study is a follow-up questionnaire study of Finnish municipal workers, conducted in 1981 to 1997 at the Finnish Institute of Occupational Health. In 1981, a postal questionnaire was sent to 7344 municipal workers in different parts of Finland. The respondents were born between 1923 and 1937. A total of 6257 persons responded to the first questionnaire. In the end, a total of 3817 persons had responded to all four (1981, 1985, 1992, 1997) questionnaires. (The response rate was 69% of the living participants). Cross-tabulations, comparison of means, logistic regression analyses and general linear models with repeated measures were used to derive the results. The transition from work life to retirement, and the following years as a pensioner were associated with many changes. Involvement in various activities increased during the transition stage but later decreased to the previous level. Physical exercise was an exception: it became increasingly popular over the years. Perceived health improved markedly from the working stage to the retirement transition stage, even though morbidity increased steadily during the follow-up. On the other hand, functional capacity decreased over the follow-up, especially among those who were occupationally active until the retirement stage. Subjective well-being remained stable during the follow-up period. There were, however, great differences based on the type of work, favouring those whose work had been mental in nature. The impact of activity level on maintaining well-being became greater during the follow-up, whereas the effect of physical functioning diminished. Good physical functioning and an active life-style contributed to staying on at work until normal retirement age. Also work-related factors, i.e. possibilities for development and influence at work, responsibility for others, meaningful work, and satisfaction with working time arrangements were positively related to continuing working. The transition from work to retirement had a positive impact on a person s health and functional capacity. The study results support the view that it should be possible to ease one s work pace during the last years of a work career. This might lower the threshold between work and retirement and convince people that there will still be time to enjoy retirement also a few years later.
Resumo:
This study investigates the role of social media as a form of organizational knowledge sharing. Social media is investigated in terms of the Web 2.0 technologies that organizations provide their employees as tools of internal communication. This study is anchored in the theoretical understanding of social media as technologies which enable both knowledge collection and knowledge donation. This study investigates the factors influencing employees’ use of social media in their working environment. The study presents the multidisciplinary research tradition concerning knowledge sharing. Social media is analyzed especially in relation to internal communication and knowledge sharing. Based on previous studies, it is assumed that personal, organizational, and technological factors influence employees’ use of social media in their working environment. The research represents a case study focusing on the employees of the Finnish company Wärtsilä. Wärtsilä represents an eligible case organization for this study given that it puts in use several Web 2.0 tools in its intranet. The research is based on quantitative methods. In total 343 answers were obtained with the aid of an online survey which was available in Wärtsilä’s intranet. The associations between the variables are analyzed with the aid of correlations. Finally, with the aid of multiple linear regression analysis the causality between the assumed factors and the use of social media is tested. The analysis demonstrates that personal, organizational and technological factors influence the respondents’ use of social media. As strong predictive variables emerge the benefits that respondents expect to receive from using social media and respondents’ experience in using Web 2.0 in their private lives. Also organizational factors such as managers’ and colleagues’ activeness and organizational guidelines for using social media form a causal relationship with the use of social media. In addition, respondents’ understanding of their responsibilities affects their use of social media. The more social media is considered as a part of individual responsibilities, the more frequently social media is used. Finally, technological factors must be recognized. The more user-friendly social media tools are considered and the better technical skills respondents have, the more frequently social media is used in the working environment. The central references in relation to knowledge sharing include Chun Wei Choo’s (2006) work Knowing Organization, Ikujiro Nonaka and Hirotaka Takeuchi’s (1995) work The Knowledge Creating Company and Linda Argote’s (1999) work Organizational Learning.
Resumo:
Somatic embryogenesis (SE) is an asexual form of plant propagation that occurs in nature and mimics many of the events of sexual reproduction. Pinus sylvestris (L.) is an important source of timber in Northern Eurasia but it is recalcitrant to somatic embryogenesis. Several factors important for the success of the P. sylvestris embryogenic cultures have not been thoroughly investigated. In this study, we examined the effects of parental genotypes on the SE in P. sylvestris, the involvement of the gaseous plant growth regulator, ethylene in SE, and also biotic effects on somatic embryos as well as on seedlings. We tested parental effects on immature embryo initiation for different media, storage periods, and on the maturation process. Maternal effects were found to be crucial for SE in the absence of paternal effects. No maternal-paternal interaction was observed at any stage of somatic embryo production. Additionally the role of ethylene at different developmental stages of SE was investigated. Two ACC synthase genes, PsACS1 and PsACS2, were isolated and characterized. PsACS1 was expressed during the proliferation stage in all tested genotypes, whereas PsACS2 was only expressed in somatic embryos of each genotype. Ethylene production in embryos at stage 3 was significantly higher than the other stages. In a parallel study, the response of somatic embryos to fungal elicitors was investigated. Three fungi, a mutualistic ectomycorrhizal (ECM) fungus (Suillus bovinus), a weak Scots pine pathogen (Heterobasidion parviporum) and a strong pathogen (H. annosum) were used. The gene expression patterns for embryos exposed to the H. parviporum elicitor were found to be similar to that documented for S. bovinus among the tested genes. By contrast somatic embryos exposed to the H. annosum elicitor had a different pattern of regulation which was marked by a delayed response, and in some cases death of the embryos. Furthermore, interaction without direct contact between P. sylvestris seedlings and microbes (mutualistic and pathogenic fungus, cyanobacterium) were investigated. Several novel genes expressed in seedlings treated with ECM fungus were isolated which suggested that physical contact is not necessary for elicitation of host responses. The results suggest that somatic embryos and seedlings of P. sylvestris are genetically well equipped to respond to fungal elicitor/exudates and could serve as a suitable model for reproducible molecular studies in conifer tree patho- and symbiotic systems.
Resumo:
This study contributes to the executive stock option literature by looking at factors driving the introduction of such a compensation form on a firm level. Using a discrete decision model I test the explanatory power of several agency theory based variables and find strong support for predictability of the form of executive compensation. Ownership concentration and liquidity are found to have a significant negative effect on the probability of stock option adoption. Furtermore, I find evidence of CEO ownership, institutional ownership, investment intensity, and historical market return having a significant and a positive relationship to the likelihood of adopting a executive stock option program.
Resumo:
Pre-eclampsia is a pregnancy complication that affects about 5% of all pregnancies. It is known to be associated with alterations in angiogenesis -related factors, such as vascular endothelial growth factor (VEGF). An excess of antiangiogenic substances, especially the soluble receptor-1 of VEGF (sVEGFR-1), has been observed in maternal circulation after the onset of the disease, probably reflecting their increased placental production. Smoking reduces circulating concentrations of sVEGFR-1 in non-pregnant women, and in pregnant women it reduces the risk of pre-eclampsia. Soluble VEGFR-1 acts as a natural antagonist of VEGF and placental growth factor (PlGF) in human circulation, holding a promise for potential therapeutic use. In fact, it has been used as a model to generate a fusion protein, VEGF Trap , which has been found effective in anti-angiogenic treatment of certain tumors and ocular diseases. In the present study, we evaluated the potential use of maternal serum sVEGFR-1, Angiopoietin-2 (Ang-2) and endostatin, three central anti-angiogenic markers, in early prediction of subsequent pre-eclampsia. We also studied whether smoking affects circulating sVEGFR-1 concentrations in pregnant women or their first trimester placental secretion and expression in vitro. Last, in order to allow future discussion on the potential therapy based on sVEGFR-1, we determined the biological half-life of endogenous sVEGFR-1 in human circulation, and measured the concomitant changes in free VEGF concentrations. Blood or placental samples were collected from a total of 268 pregnant women between the years 2001 2007 in Helsinki University Central Hospital for the purposes above. The biomarkers were measured using commercially available enzyme-linked immunosorbent assays (ELISA). For the analyses of sVEGFR-1, Ang-2 and endostatin, a total of 3 240 pregnant women in the Helsinki area were admitted to blood sample collection during two routine ultrasoundscreening visits at 13.7 ± 0.5 (mean ± SD) and 19.2 ± 0.6 weeks of gestation. Of them, 49 women later developing pre-eclampsia were included in the study. Their disease was further classified as mild in 29 and severe in 20 patients. Isolated early-onset intrauterine growth retardation (IUGR) was diagnosed in 16 women with otherwise normal medical histories and uncomplicated pregnancies. Fifty-nine women remaining normotensive, non-proteinuric and finally giving birth to normal-weight infants were picked to serve as the control population of the study. Maternal serum concentrations of Ang-2, endostatin and sVEGFR-1, were increased already at 16 20 weeks of pregnancy, about 13 weeks before the clinical manifestation of preeclampsia. In addition, these biomarkers could be used to identify women at risk with a moderate precision. However, larger patient series are needed to determine whether these markers could be applied for clinical use to predict preeclampsia. Intrauterine growth retardation (IUGR), especially if noted at early stages of pregnancy and not secondary to any other pregnancy complication, has been suggested to be a form of preeclampsia compromising only the placental sufficiency and the fetus, but not affecting the maternal endothelium. In fact, IUGR and preeclampsia have been proposed to share a common vascular etiology in which factors regulating early placental angiogenesis are likely to play a central role. Thus, these factors have been suggested to be involved in the pathogenesis of IUGR. However, circulating sVEGFR-1, Ang-2 and endostatin concentrations were unaffected by subsequent IUGR at early second trimester. Furthermore, smoking was not associated with alterations in maternal circulating sVEGFR-1 or its placental production. The elimination of endogenous sVEGFR-1 after pregnancy was calculated from serial samples of eight pregnant women undergoing elective Caesarean section. As typical for proteins in human compartments, the elimination of sVEGFR-1 was biphasic, containing a rapid halflife of 3.4 h and a slow one of 29 h. The decline in sVEGFR-1 concentrations after mid-trimester legal termination of pregnancy was accompanied with a simultaneous increase in the serum levels of free VEGF so that within a few days after pregnancy VEGF dominated in the maternal circulation. Our study provides novel information on the kinetics of endogenous sVEGFR-1, which serves as a potential tool in the development of new strategies against diseases associated with angiogenic imbalance and alterations in VEGF signaling.
Resumo:
Background: The improved prognosis of early preterm birth has created a generation of surviving very low birth weight (< 1500 g, VLBW) infants whose health risks in adulthood are poorly known. Of every 1000 live-born infants in Finland, about 8 are born at VLBW. Variation in birth weight, even within the normal range, relates to considerable variation in the risk for several common adult disorders, including cardiovascular disease and osteoporosis. Small preterm infants frequently exhibit severe postnatal or prenatal growth retardation, or both. Much reason for concern thus exists, regarding adverse health effects in surviving small preterm infants later lives. We studied young adults, aiming at exploring whether VLBW birth and postnatal events after such a birth are associated with higher levels of risk factors for cardiovascular disease or osteoporosis. Subjects and Methods: A follow-up study for VLBW infants began in 1978; by the end of 1985, 335 VLBW survivors at Helsinki University Central Hospital participated in the follow-up. Their gestational ages ranged from 24 to 35 weeks, mean 29.2 and standard deviation 2.2 weeks. In 2004, we invited for a clinic visit 255 subjects, aged 18 to 27, who still lived in the greater Helsinki area. From the same birth hospitals, we also invited 314 term-born controls of similar age and sex. These two study groups underwent measurements of body size and composition, function of brachial arterial endothelium (flow-mediated dilatation, FMD) and carotid artery intima-media thickness (cIMT) by ultrasound. In addition, we measured plasma lipid concentrations, ambulatory blood pressure, fasting insulin, glucose tolerance and, by dual-energy x-ray densitometry, bone-mineral density. Results: 172 control and 166 VLBW participants underwent lipid measurements and a glucose tolerance test. VLBW adults fasting insulin (adjusted for body mass index) was 12.6% (95% confidence interval, 0.8 to 25.8) higher than that of the controls. The glucose and insulin concentrations 120 minutes after 75 g glucose ingestion showed similar differences (N=332) (I). VLBW adults had 3.9 mmHg (1.3 to 6.4) higher office systolic blood pressure, 3.5 mmHg (1.7 to 5.2) higher office diastolic blood pressure (I), and, when adjusted for body mass index and height, 3.1 mmHg (0.5 to 5.5) higher 24-hour mean systolic blood pressure (N=238) (II). VLBW birth was associated neither with HDL- or total cholesterol nor triglyceride concentrations (N=332) (I), nor was it associated with a low FMD or a high cIMT (N=160) (III). VLBW adults had 0.51-unit (0.28 to 0.75) lower lumbar spine Z scores and 0.56-unit (0.34 to 0.78) lower femoral neck Z scores (N=283). Adjustments for size attenuated the differences, but only partially (IV). Conclusions: These results imply that those born at VLBW, although mostly healthy as young adults, already bear several risk factors for chronic adult disease. The significantly higher fasting insulin level in adults with VLBW suggests increased insulin resistance. The higher blood pressure in young adults born at VLBW may indicate they later are at risk for hypertension, although their unaffected endothelial function may be evidence for some form of protection from cardiovascular disease. Lower bone mineral density around the age of peak bone mass may suggest increased risk for later osteoporotic fractures. Because cardiovascular disease and osteoporosis are frequent, and their prevention is relatively cheap and safe, one should focus on prevention now. When initiated early, preventive measures are likely to have sufficient time to be effective in preventing or postponing the onset of chronic disease.
Resumo:
Background: The improved prognosis of early preterm birth has created a generation of surviving very low birth weight (PIENEMPI KUIN 1500 g, VLBW) infants whose health risks in adulthood are poorly known. Of every 1000 live-born infants in Finland, about 8 are born at VLBW. Variation in birth weight, even within the normal range, relates to considerable variation in the risk for several common adult disorders, including cardiovascular disease and osteoporosis. Small preterm infants frequently exhibit severe postnatal or prenatal growth retardation, or both. Much reason for concern thus exists, regarding adverse health effects in surviving small preterm infants later lives. We studied young adults, aiming at exploring whether VLBW birth and postnatal events after such a birth are associated with higher levels of risk factors for cardiovascular disease or osteoporosis. Subjects and Methods: A follow-up study for VLBW infants began in 1978; by the end of 1985, 335 VLBW survivors at Helsinki University Central Hospital participated in the follow-up. Their gestational ages ranged from 24 to 35 weeks, mean 29.2 and standard deviation 2.2 weeks. In 2004, we invited for a clinic visit 255 subjects, aged 18 to 27, who still lived in the greater Helsinki area. From the same birth hospitals, we also invited 314 term-born controls of similar age and sex. These two study groups underwent measurements of body size and composition, function of brachial arterial endothelium (flow-mediated dilatation, FMD) and carotid artery intima-media thickness (cIMT) by ultrasound. In addition, we measured plasma lipid concentrations, ambulatory blood pressure, fasting insulin, glucose tolerance and, by dual-energy x-ray densitometry, bone-mineral density. Results: 172 control and 166 VLBW participants underwent lipid measurements and a glucose tolerance test. VLBW adults fasting insulin (adjusted for body mass index) was 12.6% (95% confidence interval, 0.8 to 25.8) higher than that of the controls. The glucose and insulin concentrations 120 minutes after 75 g glucose ingestion showed similar differences (N=332) (I). VLBW adults had 3.9 mmHg (1.3 to 6.4) higher office systolic blood pressure, 3.5 mmHg (1.7 to 5.2) higher office diastolic blood pressure (I), and, when adjusted for body mass index and height, 3.1 mmHg (0.5 to 5.5) higher 24-hour mean systolic blood pressure (N=238) (II). VLBW birth was associated neither with HDL- or total cholesterol nor triglyceride concentrations (N=332) (I), nor was it associated with a low FMD or a high cIMT (N=160) (III). VLBW adults had 0.51-unit (0.28 to 0.75) lower lumbar spine Z scores and 0.56-unit (0.34 to 0.78) lower femoral neck Z scores (N=283). Adjustments for size attenuated the differences, but only partially (IV). Conclusions: These results imply that those born at VLBW, although mostly healthy as young adults, already bear several risk factors for chronic adult disease. The significantly higher fasting insulin level in adults with VLBW suggests increased insulin resistance. The higher blood pressure in young adults born at VLBW may indicate they later are at risk for hypertension, although their unaffected endothelial function may be evidence for some form of protection from cardiovascular disease. Lower bone mineral density around the age of peak bone mass may suggest increased risk for later osteoporotic fractures. Because cardiovascular disease and osteoporosis are frequent, and their prevention is relatively cheap and safe, one should focus on prevention now. When initiated early, preventive measures are likely to have sufficient time to be effective in preventing or postponing the onset of chronic disease.