326 resultados para QUANTUM-DOT
Resumo:
A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The wetting layers (WL) in InAs/GaAs quantum-dot system have been studied by reflectance difference spectroscopy (RDS), in which two structures related to the heavy-hole (HH) and light-hole (LH) transitions in the WL have been observed. The evolution and segregation behaviors of WL during Stranski-Krastanow (SK) growth mode have been studied from the analysis of the WL-related optical transition energies. It has been found that the segregation coefficient of Indium atoms varies linearly with the InAs amount in WL. In addition, the effect of the growth temperature on the critical thickness for InAs island formation has also been studied. The critical thickness defined by the appearance of InAs dots, which is determined by AFM, shows a complex variation with the growth temperature. However, the critical thickness determined by RDS is almost constant in the range of 510-540 degrees C.
Resumo:
Performing an event-based continuous kinetic Monte Carlo (KMC) simulation, We investigate the growth conditions which are important to form semiconductor quantum dot (QD) in molecular beam epitaxy (MBE) system. The simulation results provide a detailed characterization of the atomic kinetic effects. The KMC simulation is also used to explore the effects of periodic strain to the epitaxy growth of QD. The simulation results are in well qualitative agreement with experiments.
Resumo:
Self-assembled InAs QD dot-in-a-well (DWELL) structures were grown on GaAs substrate by MBE system, and heterojunction modulation-doped field effect transistor (MODFET) was fabricated. The optical properties of the samples show that the photoluminescence of InAs/GaAs self-assembled quantum dot (SAQD) is at 1.265 mu m at 300 K. The temperature-dependence of the abnormal redshift of InAs SAQD wavelength with the increasing temperature was observed, which is closely related with the inhomogeneous size distribution of the InAs quantum dot. According to the electrical measurement, high electric field current-voltage characteristic of the MODFET device were obtained. The embedded InAs QD of the samples can be regard as scattering centers to the vicinity of the channel electrons. The transport property of the electrons in GaAs channel will be modulated by the QD due to the Coulomb interaction. It has been proposed that a MODFET embedded with InAs QDs presents a novel type of field effect photon detector.
Resumo:
Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers are numerically studied by rate equation models. Similar to the optical pump-probe experiment, the injection of double optical pulses is used to simulate the gain recovery of a weak continuous signal for the QD SOAs. The gain recoveries are fitted by a response function with multiple exponential terms. For the pulses duration of 10 ps, the gain recovery can be described by three exponential terms with the time constants, and for the pulse with the width of 150 fs, the gain recovery can be described by two exponential terms, the reason is that the short pulse does not consume lot of carriers.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:15:32Z No. of bitstreams: 1 Large-Signal Performance of 1.3 mu m InAs-GaAs quantum-dot lasers.pdf: 281494 bytes, checksum: 1ebcdfdc887e3a3b279e07b3f655167b (MD5)
Resumo:
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.
Resumo:
Temperature-dependent modulation characteristics of 1.3 mu m InAs/GaAs quantum dot (QD) lasers under small signals have been carefully studied at various bias currents. Based on experimental observations, it is found that the modulation bandwidth significantly increases when excited state (ES) lasing emerges at high temperature. This is attributed to additional photons emitted by ES lasing which contribute to the modulation response. A rate equation model including two discrete electron energy levels and the level of wetting layer has been used to investigate the temperature-dependent dynamic behavior of the QD lasers. Numerical investigations confirm that the significant jump for the small signal modulation response is indeed caused by ES photons. Furthermore, we identify how the electron occupation probabilities of the two discrete energy levels can influence the photon density of different states and finally the modulation rate. Both experiments and numerical analysis show that the modulation bandwidth of QD lasers at high temperature can be increased by injecting more carriers into the ES that has larger electron state degeneracy and faster carrier's relaxation time than the ground state.
Resumo:
We report the molecular beam epitaxy growth of 1.3 mu m InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T-0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 mu m and a cavity length of 1200 mu m are fabricated and tested in the pulsed regime under different temperatures. It is found that T-0 of the QD lasers is as high as 532K in the temperature range from 10 degrees C to 60 degrees C. In addition, the aging test for the lasers under continuous wave operation at 100 degrees C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.
Resumo:
We demonstrate 10 Gb/s directly-modulated 1.3 mu m InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 mu m and a cavity length of 600 mu m are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50 degrees C are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.
Resumo:
The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.
Resumo:
A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78 K, a clear spectral response in the range of 2 -7 mu m has been obtained with peaks at 3.1, 4.8 and 5.7 mu m. The bandgap energies of GaAs and Al0.2Ga0.8As at 78K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110 K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure.
Resumo:
Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm(2)). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to similar to 150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device.
Resumo:
In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.