128 resultados para 8-Channel Temperature Lance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport properties of two-dimensional electron gas (2DEG) are crucial to metamorphic high-electron-mobility transistors (MM-HEMT). We have investigated the variations of subband electron mobility and concentration versus temperature from Shubnikov-de Hass oscillations., and variable temperature Hall measurements. The results indicate that the electrical performance is the best when the In content is 0.65 in the channel for MM-HEMT. When the In content exceeds 0.65, a large lattice mismatch will cause dislocations and result in the decrease of mobility and the fall of performance in materials and devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new self-assembled quantum dots system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix has been fabricated. The photoluminescence linewidth increases with increasing temperature, which is very different from normal In(Ga)As/GaAs quantum dots. The results are attributed to a higher energy of the wetting layer which breaks the carrier transfer channel between dots and keeps the dots more isolated from each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells grown on a GaAs substrate by molecular beam epitaxy are measured in a range of temperatures and excitation power densities. The energy position of the dominant PL peak shows an anomalous S-shape temperature dependence instead of the Varshni relation. By careful inspection, especially for the PL under lower excitation power density, two near bandedge peaks are well identified. These are assigned to carriers localized in nitrogen-induced bound states and interband excitonic recombinations, respectively. It is suggested that the temperature-induced switch of such two luminescence peaks in relative intensity causes a significant mechanism responsible for the S-shape shift observed in GaInNAs. A quantitative model based on the thermal depopulation of carriers is used to explain the temperature dependence of the PL peak related to N-induced bound states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the observation of resonant Raman scattering in low-temperature-grown AlGaAs/GaAs structure. Two kinds of excitation lights, 632.8 and 488 nm laser lines, were used to detect scattering signal from different regions based on different penetration depths. Under the outgoing resonant condition, up to fourth-order resonant Raman peaks were observed in the low-temperature-grown AlGaAs alloy, owing to a broad exciton luminescence in low-temperature-grown AlGaAs alloy induced by intrinsic defects and As cluster after post-annealing. These resonant peaks were assigned according to their fundamental modes. Among the resonant peaks, besides the overtones of the GaAs- or AlAs-like mode, there exist combination bands of these two kinds of modes. In addition, a weak scattering peak similar to the bulk GaAs longitudinal optical mode was observed in low-temperature Raman experiments. We consider the weak signal correlated with GaAs clusters appearing in AlGaAs alloys. The accumulation of GaAs in AlGaAs alloys was enhanced after annealing at high temperatures. A detailed study of the dependence of vibration modes on measuring temperature and post-annealing conditions is given also. In light of our experiments, it is suggested that a Raman scattering experiment is a sensitive microscopic probe of local disorder and, especially performed at low temperature, is a superior method in detecting and analyzing the weak interaction between phonons and electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metamorphic high electron mobility transistor (M-HEMT) structures have been grown on GaAs substrates by molecular beam epitaxy (MBE). Linearly graded and the step-graded InGaAs and InAlAs buffet layers hal e been compared, and TEM, PL and low-temperature Hall have been used to analyze the properties of the buffer layers and the M-HEMT structure. For a single-delta-doped M-HEMT structure with an In0.53Ga0.47As channel layer and a 0.8 mum step-graded InAlAs buffer layer, room-temperature mobility of 9000 cm(2)/V s and a sheet electron density as high as 3.6 x 10(12)/cm(2) are obtained. These results are nearly equivalent to those obtained for the same structure grown on an InP substrate. A basic M-HEMT device with 1 mum gate was fabricated, and g(m) is larger than 400 mS/mm. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence measurements have been performed in Si-rich a-SiNx:H (x less than or equal to 1.3) alloys prepared by glow discharge. It is observed that the blue shift of the peak of room temperature luminescence spectrum with increasing N content parallels increasing intensity. Two distinct luminescence mechanisms are proposed in a-SiNx:H with the threshold near x = 0.8. For low x, the samples show typical luminescence properties of a-Si:H, while for high x, the normalized luminescence bands are independent of temperature. Combining percolation theory, the luminescence origins are discussed on the basis of Brodsky's quantum well model. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-temperature Si0.8Ge0.2 (LT-Si0.8Ge0.2) interlayer was grown at 500 degrees C to improve the relaxed Si0.8Ge0.2 surface and reduce the dislocation density in it, which was confirmed by the change of reflective high-energy electron diffraction (RHEED) pattern from spotty to streaky and etch pits counts. For the same extent of strain; the threading dislocation density was reduced from 8 x 10(7) cm(-2) in the latter to 2 x 10(6) cm(-2) in the former. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence of ZnSe, Zn0.84Mn0.16Se alloy, and ZnSe/Zn0.84Mn0.16Se superlattice (SL) have been measured in the temperature range from 10 to 300 K. It is found that the band gap of the ZnSe was smaller than that of the Zn0.84Mn0.16Se alloy at 10 K, but larger than that of the alloy at 300 K. Then the well and barrier layers of the ZnSe/Zn0.84Mn0.16Se SL would be expected to turn over at about 180 K. This type of turn over was observed in the SL sample. The turn over took place at 80 K, somewhat lower than the expected temperature. A calculation including the strain in the ZnSe/Zn0.84Mn0.16Se SL indicates that the heavy-hole bands begin crossing at 75 K, which agrees well with experimental results. [S0163-1829(99)13127-8].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality InGaAs/InAlAs/InP high-electron-mobility transistor (HEMT) structures with lattice-matched or pseudomorphic channels have been grown by molecular-beam epitaxy (MBE). The purpose of this work is to enhance the channel conductivity by changing the epitaxial structure and growth process. With the use of pseudomorphic step quantum-well channel, the highest channel conductivity is achieved at x = 0.7, the corresponding electron mobilities are as high as 12300 (300 K) and 61000 cm(2)/V.s (77 K) with two-dimensional electron gas (2DEG) density of 3.3 x 10(12) cm(-2). These structures are comprehensively characterized by Hall measurements, photoluminescence, double crystal X-ray diffraction and transmission electron microscopy. Strong room-temperature luminescence is observed, demonstrating the high optical quality of the samples. We also show that decreasing the In composition in the InyAl1-yAs spacer is very effective to increase the 2DEG density of PHEMT structures. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al0.3Ga0.7N/AlN/GaN HEMT structures with significantly high mobility have been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. At room temperature (RT) a Hall mobility of 2104 cm(2)/Vs and a two-dimensional electron gas (2DEG) density of 1.1x10(13) cm(-2) are achieved, corresponding to a sheet resistance of 277.8 Omega/sq. The elimination of V-shaped defects were observed on Al0.3Ga0.7N/AlN/GaN HEMT structures and correlated with the increase of 2DEG mobility. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8 x 10(-4). A clear narrow band detection spectrum centered at 4.5 mu m has been observed above room temperature for a device with 200 x 200 mu m(2) square mesa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.