294 resultados para NM LASER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of improving 1064 nm, 12 ns laser-induced damage threshold (LIDT) of TiO2/SiO2 high reflectors (HR) prepared by electronic beam evaporation from 5.1 to 13.1 J/cm(2) by thermal annealing is discussed. Through optical properties, structure and chemical composition analysis, it is found that the reduced atomic non-stoichiometric defects are the main reason of absorption decrease and LIDT rise after annealing. A remarkable increase of LIDT is found at 300 degrees C annealing. The refractive index and film inhomogeneity rise, physical thickness decrease, and film stress changes from compress stress to tensile stress due to the structure change during annealing. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-induced damages to TiO2 single layers and TiO2/SiO2 high reflectors at laser wavelength of 1064 nm, 800 run, 532 urn, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO2 coatings are mainly thermally by damaged at long pulse (tau >= 220 ps). The damage shows ablation feature at 50 fs. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series or Ta2O5 films with different SiO2 additional layers including overcoat, undercoat and interlayer was prepared by electron beam evaporation under the same deposition process. Absorption of samples was measured using the surface thermal lensing (STL) technique. The electric field distributions of the samples were theoretical predicted using thin film design software (TFCalc). The laser induced damage threshold (LIDT) was assessed using an Nd:YAG laser operating at 1064 nm with a pulse length of 12 ns. It was found that SiO2 additional layers resulted in a slight increase of the absorption, whereas they exerted little influence on the microdefects. The electric field distribution among the samples was unchanged by adding an SiO2 overcoat and undercoat, yet was changed by adding an interlayer. SiO2 undercoat. The interlayer improved the LIDT greatly, whereas the SiO2 overcoat had little effect on the LIDT. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO2/SiO2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N-2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm(2), but it is increased to 8.98 J/cm(2) after annealing under temperature of 200 degrees C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode competitions between modes with different output coupling efficiencies can result in optical bistability under certain asymmetric nonlinear gain. For a GaInAsP/InP equilateral triangle microlaser with the side length of 10 mu m, the drop of the output power with the increase of the injection current is observed corresponding to transverse mode transitions. Furthermore, the measured laser spectra up to 270 K show that lasing modes coexist with the wavelength interval of 39 nm at 240 K. The emission at 5.2 THz can be expected by the mode frequency beating with the 39 nm interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC with single-point-defect structure is fabricated using UV photolithography and inductive coupled plasma reactive ion etching on the surface of the VCSEL's top distributed Bragg-reflector. The PhC VCSEL maintains single-fundamental-mode operating with output power 1.7 mW and threshold current 2.5 mA. The full width half maximum of the lasing spectrum is less than 0.1 nm, the far field divergence angle is less than 10 degrees and the side mode suppression ratio is over 35 dB. The device characteristics are analyzed based on the effective index model of the photonic crystal fiber. The experimental results agree well with the theoretical expectation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1550 nm AlGaInAs/InP long rectangle resonator lasers with three sides surrounded by SiO2 and p electrode layers are fabricated by planar technology, and room-temperature continuous-wave lasing is realized for a laser with a length of 53 mu m and a width of 2 mu m. Multiple peaks with wavelength intervals of Fabry-Perot mode intervals and mode Q factors of about 400 and a lasing mode with a Q factor over 8000 are observed from the lasing spectrum at threshold current. The numerical results of the FDTD simulation indicate that the lasing mode may be a whispering-gallery mode, which is a coupled mode of two high-order transverse modes of the waveguide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we obtain SiGe quantum dots with the diameters and density of 15-20 nm and 1.8 x 10(11) cm(-2), respectively, by 193 nm excimer laser annealing of Si0.77Ge0.23 strained films. Under the excimer laser annealing, only surface atoms diffusion happens. From the detailed statistical information about the size and shape of the quantum dots with different annealing time, it is shown that the as-grown self-assembled quantum dots, especially the {105}-faceted dots, are not stable and disappear before the appearance of the laser-induced quantum dots. Based on the calculation of surface energy and surface chemical potential, we show that the {103}-faceted as-grown self-assembled quantum dots are more heavily strained than the {105}-faceted ones, and the heavy strain in the dot can decrease the surface energy of the dot facets. The formation of the laser-induced quantum dots, which is also with heavy strain, is attributed to kinetic constraint. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue-green GaN-based vertical cavity surface emitting lasers (VCSELs) were fabricated with two dielectric Ta2O5/SiO2 distributed Bragg reflectors. Lasing action was observed at a wavelength of 498.8 nm at room temperature under optical pumping. Threshold energy density and emission linewidth were 189 mJ/cm(2) and 0.15 nm, respectively. The result demonstrates that blue-green VCSELs can be realised using III-nitride semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fiber laser hydrophone with enhanced sensitivity is demonstrated. Two diaphragms with a hard core fixed at each center are used as the sensing element. Theoretical analysis shows that the Young's modulus of the diaphragm and the radius of the hard core have significant effect on the acoustic sensitivity. Experiments are carried out to test this effect and the performance of the hydrophone. The experimental result agrees well with the theoretical result, and a sensitivity of 7 nm/MPa has been achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, the single mode operation of a Fabry-Perot laser (FP-LD) subject to the optical injection from a tunable laser is investigated. The maximum side mode suppression ratio (SMSR) is 53 dB, and the locked wavelength range is about 46 nm, which can cover 58 International Telecommunication Union (ITU) wavelengths with 100 GHz spacing or 115 ITU wavelengths with 50 GHz spacing for wavelength division multiplexing (WDM) system. In the wavelength range front 1535 to 1569 nm, the SMSR is over 46 dB, and the frequency response of the injection-locked FP-LD can be improved with the proper wavelength detuning. (c) 2008 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1689-nm diode lasers used in medical apparatus have been fabricated and characterized. The lasers had pnpn InP current confinement structure, and the active region consisted of 5 pairs of InGaAs quantum wells and InGaAsP barriers. Stripe width and cavity length of the laser were 1.8 and 300 pm, respectively. After being cavity coated. and transistor outline (TO) packaged, the lasers showed high performance in practice. The threshold current was about 13 +/- 4 mA, the operation current and the lasing spectrum were about 58 6 mA and 1689 +/- 6 nm at 6-mW output power, respectively. Moreover, the maximum output power of the lasers was above 20 mW.