190 resultados para Laser energy
Resumo:
Optically pumped GaN-based vertical cavity surface-emitting laser (VCSEL) with two Ta2O5/SiO2 dielectric distributed Bragg reflectors (DBRs) was fabricated via a simplifled procedure direct deposition of the top DBR onto the GaN surface exposed after substrate removal and no use of etching and polishing processes. Blue-violet lasing action was observed at a wavelength of 397.3 ran under optical pumping at room temperature with a threshold pumping energy density of about 71.5 mJ/cm(2). The laser action was further confirmed by a narrow emission linewidth of 0.13 nm and a degree of polarization of about 65%. The result suggests that practical blue-violet GaN-bsaed VCSEL can be realized by optimizing the laser lift-off technique for substrate removal.
Resumo:
We report the technique of the ion-implanted semi-insulating GaAs wafer used for passive Q-switched mode locking in double-cladding Yb:fiber laser. The wafer was implanted with 400-keV energy, 10(16)/cm(2) dose As+ ions, and was annealed at 600degreesC for 20 min. At the pump power of 5W, we achieved output power of 200mW. The repetition rate of envelope of Q-switched mode locking is 50-kHz with a FWHM envelope of 4mus. The repetition rate of mode locked pulse train was found to be 15-MHz. This is the first report of such a kind of laser to the best of our knowledge.
Resumo:
A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
The thermal stability of InN in the growth environment in metalorganic chemical vapor deposition was systematically investigated in situ by laser reflectance system and ex situ by morphology characterization, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that InN can withstand isothermal annealing at temperature as high as 600 degrees C in NH3 ambient. While in N-2 atmosphere, it will decompose quickly to form In-droplets at least at the temperature around 500 degrees C, and the activation energy of InN decomposition was estimated to be 2.1 +/- 0.1 eV. Thermal stability of InN when annealing in NH3 ambient during temperature altering would be very sensitive to ramping rate and NH3 flow rate, and InN would sustain annealing process at small ramping rate and sufficient supply of reactive nitrogen radicals. Whereas In-droplets formation was found to be the most frequently encountered phenomenon concerning InN decomposition, annealing window for conditions free of In-droplets was worked out and possible reasons related are discussed. In addition, InN will decompose in a uniform way in the annealing window, and the decomposition rate was found to be in the range of 50 and 100 nm/h. Hall measurement shows that annealing treatment in such window will improve the electrical properties of InN. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multi-quantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30 mu m). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19 mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
The design and basic characteristics of a strained InGaAsP-InP multiple-quantum-well (MQW) DFB laser monolithically integrated with an electroabsorption modulator (EAM) by ultra-low-pressure (22 mbar) selective-area-growth (SAG) MOCVD are presented. A fundamental study of the controllability and the applicability of band-gap energy by using the SAG, method is performed. A large band-gap photoluminescence wavelength shift of 88 mn. was obtained with a small mask width variation (0-30 mu m). The technique is then applied to fabricate a high performance strained MQW EAM integrated with a DFB laser. The threshold current of 26 mA at CW operation of the device with DFB laser length of 300 mu m and EAM length of 150 mu m has been realized at a modulator bias of 0 V. The devices also exhibit 15 dB on/off ratio at an applied bias voltage of 5 V.
Resumo:
Using a low temperature grown GaAs wafer as an intracavity saturable absorber, a temporal envelope duration of 11 ns of Q- switched and mode- locked ( QML) 1064 nm operation was achieved in a very simple compact plane- concave cavity Nd: YVO4 laser, it was so short that the pulses can be used as Q- switching pulses. The maximal average output power is 808 mW with the repetition rate of 25 kHz, and the corresponding peak power and energy of a single Q- switched pulse was 2.94 kW and 32.3 mu J, respectively. The mode- locked pulse trains inside the Q- switched pulse envelope had a repetition rate of 800 MHz.
Resumo:
We report a diode-end-pumped passively Q-switched Nd:GdVO4 laser operating at 1.06 mu m with In0.25Ga0.75As being the saturable absorber as well as an output coupler. Q-switched pulses with a pulse duration of 20 ns, pulse energy 4.2 mu J and pulse repetition rate 200 kHz were produced, corresponding to peak power of 210 W. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have demonstrated a self-staring passively continuous-wave mode-locked diode end-pumped Nd:YLF laser with a semiconductor saturable absorber mirror of single-quantum-well (In0.25Ga0.75As) grown by metal-organic chemical-vapor deposition technique at low temperature. The saturable absorber was used as nonlinear absorber and output coupler simultaneously. Stable pulse duration of 3 ps has been achieved at the repetition rate of 98 MHz. The average output power was 530 mW at 1053 nm under the incident pump power of 10 W, corresponding to the peak power of 1.8 kW and pulse energy of 5.4 nJ.
Resumo:
Details of the design, fabrication and testing of a strained InGaAsP/InGaAsP multiple quantum well (MQW) electroabsorption modulator (EAM) monolithically integrated with a DFB laser by ultra-low-pressure selective area growth (SAG) are presented. The method greatly simplifies the integration process. A study of the controllability of band-gap energy by SAG has been performed. After being completely packaged in a seven-pin butterfly compact module, the device successfully performs 10 Gb s(-1) nonreturn to zero (NRZ) operation on uncompensated transmission span >53 km in a standard fibre with a 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at a bit error rate (BER) of 10(-10) is confirmed. 10 GHz short pulse trains with 15.3 ps pulsewidth have also been generated.
Resumo:
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 mu J, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have observed an unusual temperature sensitivity of the photoluminescence (PL) peak energy for InAs quantum dots grown on InAs quantum wires (QDOWs) on InP substrate. The net temperature shift of PL wavelength of the QDOWs ranges from 0.8 to -4. angstrom/degrees C depending upon the Si doping concentration in the samples. This unusual temperature behavior can be mainly ascribed to the stress amplification in the QDOWs when the thermal strain is transferred from the surrounding InAs wires. This offers an opportunity for realizing quantum dot laser devices with a temperature insensitive lasing wavelength. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A passively Q-switched Yb: YAG microchip laser has been constructed by using a doped GaAs as the saturable absorber as well as the output coupler. At 13.5 W of pump power the device produces high-quality 3.4 muJ 52 ns pulses at 1030nm with a pulse repetition rate of 7.8kHz in a TEM00-mode.
Resumo:
Double X-ray diffraction has been used to investigate InGaAs/InAlAs quantum cascade (QC) laser grown on InP substrate by molecule beam epitaxy, by means of which, excellent lattice matching, the interface smoothness, the uniformity of the thickness and the composition of the epilayer are disclosed. What is more, these results are in good agreement with designed value. The largest lattice mismatch is within 0.18% and the intersubband absorption wavelength between two quantized energy levels is achieved at about lambda = 5.1 mum at room temperature. At 77 K, the threshold density of the QC laser is less than 2.6 kA/cm(2) when the repetition rate is 5 kHz and the duty cycle is 1%. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
X-ray diffraction, as an effective probe and simple method, is used to ascertain the precise control of the epilayer thickness and composition. Intersubband absorption from the whole structure of the QC laser is used to monitor the wavelength of the QC laser and the material quality. Path for growth of high-quality InP-based InGaAs/InAlAs quantum cascade laser material is realized. The absorption between two quantized energy levels is achieved at similar to4.7 mum. Room temperature laser action is achieved at lambda approximate to 5.1 - 5.2 mum. For some devices, if the peak output power is kept at 2 mW, quasi-continuous wave operation at room temperature can persist for more than I It. (C) 2002 Elsevier Science B.V. All rights reserved.