174 resultados para Quantum effects
Resumo:
Using the Frohlich potential associated with realistic optical phonon modes in quantum well systems, the energy loss rates of hot electrons, holes, and electron-hole pairs are calculated, with special emphasis on the effects of carrier density, hot phonon population, quantum well width, and phonon dispersion on the hot-carrier relaxation process in quasi-two-dimensional systems. (C) 1998 Academic Press Limited.
Resumo:
In this work, InAs quantum dots (QDs) grown on a linear graded InGaAs metamorphic buffer layer by molecular beam epitaxy have been investigated. The growth of the metamorphic buffer layers was carefully optimized, yielding a smooth surface with a minimum root mean square of roughness of less than 0.98 nm as measured by atomic force microscopy (AFM). InAs QDs were then grown on the buffer layers, and their emission wavelength at room-temperature is 1.49 mu m as measured by photoluminescence (PL). The effects of post-growth rapid thermal annealing (RTA) on the optical properties of the InAs QDs were investigated. After the RTA, the PL peak of the QDs was blue-shifted and the full width at half maximum decreased.
Resumo:
Performing an event-based continuous kinetic Monte Carlo (KMC) simulation, We investigate the growth conditions which are important to form semiconductor quantum dot (QD) in molecular beam epitaxy (MBE) system. The simulation results provide a detailed characterization of the atomic kinetic effects. The KMC simulation is also used to explore the effects of periodic strain to the epitaxy growth of QD. The simulation results are in well qualitative agreement with experiments.
Resumo:
High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with 42.5% indium content were successfully grown by molecular beam epitaxy. The growth of well layers was monitored by reflection high-energy electron diffraction (RHEED). Room temperature photoluminescence (PL) peak intensity of the GaIn0.425NAs/GaAs (6 nm / 20 nm) 3QW is higher than, and the full width at half maximum (FWHM) is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality due to strain compensation effects by introducing N to the high indium content InGaAs epilayer. The measured (004) X-ray rocking curve shows clear satellite peaks and Pendellosung fringes, suggesting high film uniformity and smooth interfaces. The cross sectional TEM measurements further reveal that there are no structural defects in such high indium content QWs. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Compositional distribution of the quantum well and barrier after quantum well intermixing for GaInP/AlGaInP system was theoretically analyzed on the basis of atom diffusion law. With the compositional distribution result, the valence subband structure of the intermixed quantum well was calculated on the basis of 6x6 Luttinger-Kohn Hamiltonian, including spin-orbit splitting effects. TO get more accurate results in the calculation, a full 6-band problem was solved without axial approximation, which had been widely used in the Luttinger-Kohn model to simplify the computational efforts, since there was a strong warping in the GaInP valence band. At last, the bandgap energy of the intermixed quantum well was obtained and the calculation result is of much importance in the analysis of quantum well intermixing experiments.
Resumo:
Usually in the calculation of valence subband structure for III-V direct bandgap material, axial approximation had been used in the Luttinger-Kohn model to simplify the computational efforts. In this letter, the valence subband structure for the GaInP/AlGaInP strained and lattice-matched quantum wells was calculated without axial approximation, on the basis of 6x6 Luttinger-Kohn Hamiltonian including strain and spin-orbit splitting effects. The numerical simulation results were presented with help of the finite-difference methods. The calculation results with/without axial approximation were compared and the effect of axial approximation on the valence subband structure was discussed in detail. The results indicated that there was a strong warping in the GaInP valence band, and axial approximation can lead to an error when k was not equal to zero, especially for compressively strained and lattice-matched GaInP/AlGaInP quantum wells.
Resumo:
We present a study on the facet damage profile of quantum cascade lasers (QCLs). Conspicuous cascade half-loop damage strips on front facet are observed when QCLs catastrophically failed. Due to the large difference on thermal conductivities between active region and the substrate, dominant heat is compulsively driven to the substrate. Abundant heat accumulation and dissipation on substrate build large temperature gradient and thermal lattice mismatch. Thermal-induced stress due to sequential mismatch leads to the occurrence of the multistep damages on front facet. Good agreement is achieved between the observed locations of damaged strips and the calculated results.
Resumo:
Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm(2)). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to similar to 150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device.
Resumo:
We report on a magnetophotoluminescence study of single self-assembled semiconductor nanorings which are fabricated by molecular-beam epitaxy combined with AsBr3 in situ etching. Oscillations in the neutral exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we control the period of the oscillations with a gate potential that modifies the exciton confinement. We infer from the experimental results, combined with calculations, that the exciton Aharonov-Bohm effect may account for the observed effects.
Resumo:
We have investigated temperature dependent photoluminescence of both buried and surface self-assembled InAs/GaAs quantum dots with an areal density up to similar to 10(11)/cm(2). Different from the buried quantum dots, the peak energy of surface quantum dots shows a blueshift relative to the bulk material variation from 15 to 130K. Besides the line width and the integrated intensity both first decrease and then increase in this temperature interval. The observed phenomena can be explained by carrier trapping effects by some shallow localized centers near the surface quantum dots.
Resumo:
The characteristic features of the absorption and photoluminescence spectra of ZnSe quantum dots (QDs) inside a silica matrix derived from a sol-gel method were studied at room temperature. Compared with the bulk materials, the absorption edges of ZnSe QDs in silica gel glass were shifted to higher energies and the spectra exhibited the discrete excitonic features due to the quantum confinement effects. Besides the band-edge emission, photoluminescence at ultraviolet excitation also showed the emissions related to the higher excitonic states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.
Resumo:
Hot electrons excited from the valence band by linearly polarized laser light are characterized by certain angular distributions in momenta. Owing to such angular distributions in momenta, the photoluminescence from the hot electrons shows a certain degree of polarization. A theoretical treatment of this effect observed in the photoluminescence in quantum wells is given, showing that the effect depends strongly on heavy and light hole mixing. The very large disparity between the experimentally observed and theoretically expected values of the degree of polarization in the hot-electron photoluminescence suggests the presence of random quasielastic scattering. The effects of such additional scattering and the presence of a perpendicular magnetic field are incorporated into the theory. it is shown that the measurements of the degree of polarization observed in the hot electron photoluminescence, with and without an applied perpendicular magnetic field can serve to determine the time constants for both LO-phonon inelastic and random quasielastic scattering. As an example, these time constants are determined for the experiments reported in the literature.