33 resultados para Lithography, English.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the experimental results of using the soft lithography method for replication of Dammann gratings. By using an elastomeric stamp, uniform grating structures were transferred to the LTV-curable polymer. To evaluate the quality of the replication, diffraction images and light intensity were measured. Compared with the master devices, the replicas of Dammann gratings show a slight deviation in both surface relief profile and optical performance. Experimental results demonstrated that high-fidelity replication of Dammann gratings is realized by using soft lithography with low cost and high throughput. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immersion lithography has been considered as the mainstream technology to extend the feasibility of optical lithography to further technology nodes. Using proper polarized illumination in an immersion lithographic tool is a powerful means to enhance the image quality and process capability for high numerical aperture (NA) imaging. In this paper, the impact of polarized illumination on high NA imaging in ArF immersion lithography for 45 nm dense lines and semi-dense lines is studied by PROLITH simulation. The normalized image log slope (NILS) and exposure defocus (ED) window are simulated under various polarized illumination modes, and the impact of polarized illumination on image quality and process latitude is analyzed. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A silicon-on-insulator optical fiber-to-waveguide spot-size converter (SSC) using Poly-MethylMethAcrylate (PMMA) is presented for integrated optical circuits. Unlike the conventional use of PMMA as a positive resist, it has been successfully used as a negative resist with high-dose electron exposure for the fabrication of ultrafine silicon wire waveguides. Additionally, this process is able to reduce the side-wall roughness, and substantially depresses the unwanted propagation loss. Exploiting this technology, the authors demonstrated that the SSC can improve coupling efficiency by as much as over 2.5 dB per coupling facet, compared with that of SSC fabricated with PMMA as a positive resist with the same dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photonic crystal devices with feature sizes of a few hundred nanometers are often fabricated by electron beam lithography. The proximity effect, stitching error and resist profiles have significant influence on the pattern quality, and therefore determine the optical properties of the devices. In this paper, detailed analyses and simple solutions to these problems are presented. The proximity effect is corrected by the introduction of a compensating dose. The influence of the stitching error is alleviated by replacing the original access waveguides with taper-added waveguides, and the taper parameters are also discussed to get the optimal choice. It is demonstrated experimentally that patterns exposed with different doses have almost the same edge-profiles in the resist for the same development time, and that optimized etching conditions can improve the wall angle of the holes in the substrate remarkably. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The techniques of fabricating metallic air bridges using different resists in a one-step electron beam lithography are presented. The exposure process employed a single-layer polymethyl methacrylate (PMMA) or photoresists with either different doses in the span and feet areas or with varying acceleration voltage of the electron beam. The process using photoresists with different doses has produced air bridges more stable than what the PMMA method using various acceleration voltages would achieve. Using this method, air bridges up to 12 mu m long have been fabricated. The length and height of these metallic air bridges vary with the photoresist thickness. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional grid patterns on Si(001) in nanometer scale have been fabricated by holographic lithography and reactive ion etching, which can be used as a substrate for positioning Ge islands during self-assembled epitaxy to obtain an ordered Ge quantum dots matrix. By changing the configuration of the holographic lithography and the etching rate and time, we can control the grid period, the shape of the pattern cell, and the orientation of those shapes, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-07T01:33:41Z No. of bitstreams: 1 ApplPhysLett_96_213505.pdf: 1153920 bytes, checksum: 69931d8deb797813dd478b5dd0e292c0 (MD5)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lithography-independent and wafer scale method to fabricate a metal nanogap structure is demon-strated. Polysilicon was first dry etched using photoresist (PR) as the etch mask patterned by photolithography.Then, by depositing conformal SiO_2 on the polysilicon pattern, etching back SiO_2 anisotropically in the perpendic-ular direction and removing the polysilicon with KOH, a sacrificial SiO_2 spacer was obtained. Finally, after metal evaporation and lifting-off of the SiO_2 spacer, an 82 nm metal-gap structure was achieved. The size of the nanogap is not determined by the photolithography, but by the thickness of the SiO_2. The method reported in this paper is compatible with modern semiconductor technology and can be used in mass production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-on-insulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes ad-vantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The mini-mum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy(SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an all-e-beam lithography (EBL) process for the patterning of photonic crystal waveguides.The whole device structures are exposed in two steps. Holes constituting the photonic crystal lattice and defects are first exposed with a small exposure step size (less than 10nm). With the introduction of the additional proximity effect to compensate the original proximity effect, the shape, size, and position of the holes can be well controlled.The second step is the exposure of the access waveguides at a larger step size (about 30nm) to improve the scan speed of the EBL. The influence of write-field stitching error can be alleviated by replacing the original waveguides with tapered waveguides at the joint of adjacent write-fields. It is found experimentally that a higher exposure efficiency is achieved with a larger step size;however,a larger step size requires a higher dose.