25 resultados para InGaN

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 °C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the growth by molecular beam epitaxy and characterization of InN/InGaN multiple quantum wells (MQWs) emitting at 1.5 μm. X-ray diffraction (XRD) spectra show satellite peaks up to the second order. Estimated values of well (3 nm) and barrier (9 nm) thicknesses were derived from transmission electron microscopy and the fit between experimental data and simulated XRD spectra. Transmission electron microscopy and XRD simulations also confirmed that the InGaN barriers are relaxed with respect to the GaN template, while the InN MQWs grew under biaxial compression on the InGaN barriers. Low temperature (14 K) photoluminescence measurements reveal an emission from the InN MQWs at 1.5 μm. Measurements as a function of temperature indicate the existence of localized states, probably due to InN quantum wells’ thickness fluctuations as observed by transmission electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricate and characterize novel LEDs based on InGaN/GaN nanocolumns grown on patterned substrates, leading to the periodically ordered growth of emitters directly producing white light

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• GaN NCs on Si • PA-MBE • Diameters 20 – 60 nm • Lengths 0.6 – 1.2 µm • Unstrained • PL lines correlate to NC coalescence, EXCEPT the 3.45 eV doublet

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN layers: MBE growth issues Growth of InN-based thin films: InN/InGaN QWS on GaN Growth of InN-based nanorods ● Self Self-assembled assembled InN InN nanorods nanorods onon different different substrates substrates ● Self-assembled InGaN nanorods ● Broad- Broad-emission emission nanostructures ● Self Self--assembled assembled InGaN InGaN--based based Qdisks Qdisks ● Selective area growth (SAG) of InGaN Qdisks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on plasma-assisted molecular beam epitaxy growth and characterization of InGaN/GaN quantum dots (QDs) for violet/blue applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic alloying is observed for epitaxial layers nominally intended to be In0.75Ga0.25N. Voids form beneath their interfaces with GaAs substrates, acting as sources of Ga + As out-diffusion into the growing epilayers. As a result, heteroepitaxial single-phase quaternary InxGa1-xAsyN1-y, films are formed with x similar to 0.55 and 0.05 menor que y menor que 0,10. While an undoped epilayer retains the wurtzite structure, a Mn-doped sample showed randomly spaced dopant segregations, which, together with a slightly higher As concentration, led to a transformation from the hexagonal to the twinned cubic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E-beam lithography was used to pattern a titanium mask on a GaN substrate with ordered arrays of nanoholes. This patterned mask served as a template for the subsequent ordered growth of GaN/InGaN nanorods by plasma-assisted molecular beam epitaxy. The mask patterning process was optimized for several holes configurations. The smallest holes were 30 nm in diameter with a pitch (center-to-center distance) of 100 nm only. High quality masks of several geometries were obtained that could be used to grow ordered GaN/InGaN nanorods with full selectivity (growth localized inside the nanoholes only) over areas of hundreds of microns. Although some parasitic InGaN growth occurred between the nanorods during the In incorporation, transmission electron microscopy and photoluminescence measurements demonstrated that these ordered nanorods exhibit high crystal quality and reproducible optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the morphology control of the selective area growth of GaN-based nanostructures on c-plane GaN templates. By decreasing the substrate temperature, the nanostructures morphology changes from pyramidal islands (no vertical m-planes), to GaN nanocolumns with top semipolar r-planes, and further to GaN nanocolumns with top polar c-planes. When growing InGaN nano-disks embedded into the GaN nanocolumns, the different morphologies mentioned lead to different optical properties, due to the semi-polar and polar nature of the r-planes and c-planes involved. These differences are assessed by photoluminescence measurements at low temperature and correlated to the specific nano-disk geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A relevant issue concerning optoelectronic devices based on III-nitrides is the presence of strong polarization fields that may reduce efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he composition, strain and surface morphology of (0001)InGaN layers are investigated as a function of growth temperature (460–645 °C) and impinging In flux. Three different growth regimes: nitrogen-rich, metal-rich and intermediate metal-rich, are clearly identified and found to be in correlation with surface morphology and strain relaxation. Best epilayers’ quality is obtained when growing under intermediate metal-rich conditions, with 1–2 monolayers thick In ad-coverage. For a given In flux, the In incorporation decreases with increasing growth temperature due to InN thermal decomposition that follows an Arrhenius behavior with 1.84±0.12 eV activation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. The devices are driven under pulsed operation up to 1300 A/cm2 without traces of efficiency droop. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The International Workshop on Nitride Semiconductors (IWN) is a biennial academic conference in the field of group III nitride research. The IWN and the International Conference on Nitride Semiconductors (ICNS) are held in alternating years and cover similar subject areas.