982 resultados para multiple quantum wells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of well thickness on the electroluminescence (EL) of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition is investigated. It is found that the peak wavelength of EL increases with the increase of well thickness when the latter is located in the range of 3.0-5.1 nm. The redshift is mainly attributed to the quantum confined Stark effect (QCSE). As a contrast, it is found that the EL intensity of InGaN/GaN MQWs increases with the increase of well thickness in spite of QCSE. The result of X-ray diffraction demonstrates that the interface become smoother with the increase of well thickness and suggests that the reduced interface roughness can be an important factor leading to the increase of EL intensity of InGaN/GaN MQWs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN based light emitting devices (LEDs) with asymmetric coupled quantum wells (AS-QWs) and conventional symmetric coupled quantum wells (CS-QWs) active structures were grown by metal-organic chemical vapor deposition technique. The LEDs with AS-QWs active region show improved light emission intensity and reduced forward voltage compared with LEDs with CS-QWs active region. Based on the electroluminescence measurements and the devices structure analysis, it can be concluded that these improvements are mainly attributed to the efficient hole tunneling through barriers and consequently the uniform distribution of carriers in the AS-QWs. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3254232]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relaxation of the misfit strain by the formation of misfit dislocations in InxGa1-xN/GaN multiple quantum wells grown by metal-organic chemical-vapor deposition was investigated by the cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. It is found that the misfit dislocations generated from strain relaxation are all pure-edge threading dislocations with burgers vectors of b=1/3<11 (2) over bar0>. The misfit dislocations arise from the strain relaxation due to the thickness of strained layer greater than the critical thickness. The relaxation of strained layer was mainly achieved by the formation of dislocations and localization of In, while the dislocations changed their slip planes from {0001} to {10 (1) over bar0}. With the increasing temperature, the efficiency of photoluminescence decrease sharply. It indicates that the relaxation of the misfit strain has a strong effect on optical efficiency of film. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triple-axis x-ray diffraction (TXRD) and photoluminescence (PL) spectra are used to assess the influence of the ratio of TMIn flow to group III flow on structural defects, such as dislocations and interface roughness, and optical properties of multiple quantum wells(MQWs). In this paper the mean densities of edge and screw dislocations in InGaN/GaN MQWs are obtained by W scan of every satellite peak of (0002) symmetric and (1012) asymmetric diffractions. At the same time, the interface roughness is measured by the radio of the full width at half maximum of satellite peaks to the peak orders. The experimental results showed that the density of dislocation, especially of edge dislocation, and interface roughness increase with the increase of the ratio, which leads to the decrease of PL properties. It also can be concluded that the edge dislocation acts as nonradiative recombination centers in InGaN/GaN MQWs. Also noticed is that the variation of the ratio has more influence on edge dislocation than on screw dislocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN/GaN multiple quantum wells (MQWs) are grown by metal-organic chemical vapour deposition on (0001) sapphire substrates. Triple-axis X-ray diffraction (TXRD) and photoluminescence (PL) spectra are used to assess the influence of trimethylgallium (TMGa) flow on structural defects, such as dislocations and interface roughness, and the optical properties of the MQWs. In this paper, a method, involving an ! scan of every satellite peak of TXRD, is presented to measure the mean dislocation density of InGaN/GaN MQWs. The experimental results show that under certain conditions which keep the trimethlyindium flow constant, dislocation density and interface roughness decrease with the increase of TMGa flow, which will improve the PL properties. It can be concluded that dislocations, especially edge dislocations, act as nonradiative recombination centres in InGaN/GaN MQWs. Also noticed is that changing the TMGa flow has more influence on edge dislocations than screw dislocations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN/GaN multiquantum-well (MQW) structures grown by metalorganic chemical-vapor deposition on n-type GaN and capped by p-type GaN were investigated by cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. For the sample with strained-layer thicknesses greater than the critical thicknesses, a high density of pure edge type threading dislocations generated from MQW layers and extended to the cap layer was observed. These dislocations result from a relaxation of the strained layers when their thicknesses are beyond the critical thicknesses. Because of indium outdiffusion from the well layers due to the anneal effect of Mg-doped cap layer growth and defects generated from strain relaxation, the PL emission peak was almost depressed by the broad yellow band with an intensity maximum at 2.28 eV. But for the sample with strained-layer thicknesses less than the critical thicknesses, it has no such phenomenon. The measured critical thicknesses are consistent with the calculated values using the model proposed by Fischer, Kuhne, and Richter. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of dislocations on photoluminescence (PL) of InGaN/GaN multiple quantum wells (MQWs) is investigated by triple-axis x-ray diffraction (TAXRD), transmission electron microscopy (TEM), and PL spectra. The omega scan of every satellite peak by TAXRD is adopted to evaluate the mean screw and edge dislocation densities in MQWs. The results show that dislocations can lead to a reduction of the PL-integrated intensity of InGaN/GaN MQWs under certain conditions, with edge dislocations playing a decisive role. Additionally, the dislocations can broaden the PL peak, but the effect becomes evident only under the condition when the interface roughness is relatively low. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-x Ga1-xN/GaN multiple quantum well (MQW) samples with strain-layer thickness lager/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron-electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron-electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron-electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared absorption in GaAs/AlxGa1-xAs multiple quantum wells is investigated using a polarizer. Two main peaks, with wave numbers 723 and 1092 cm(-1), are observed. The peak with wave number 1092 cm(-1) corresponds to the 0 -> 1 intersubband transition, while the other one corresponds to the intrasubband transition. The polarized absorbance is one order of magnitude higher than the unpolarized one. The authors attribute the intrasubband transition to the plasma oscillation in the quantum wells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wurtzite ZnO/MgO superlattices were successfully grown on Si (001) substrates at 750 degrees C using radio-frequency reactive magnetron sputtering method. X-ray reflection and diffraction, electronic probe and photoluminescence analysis were used to characterize the multiple quantum wells (MQWs). The results showed the periodic layer thickness of the MQWs to be 1.85 to 22.3 nm. The blueshift induced by quantum confinement was observed. Least square fitting method was used to deduce the zero phonon energy of the exciton from the room-temperature photoluminescence. It was found that the MgO barrier layers has a much larger offset than ZnMgO. The fluctuation of periodic layer thickness of the MQWs was suggested to be a possible reason causing the photoluminescence spectrum broadening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low indium content InGaN/AlGaN multiple quantum wells (MQWs) have been grown on Si(111) substrate by metal-organic chemical vapour deposition (MOCVD). A new method of using an isoelectronic indium-doped AlGaN barrier has been found to be very effective in improving the crystalline quality and interfacial abruptness of InGaN quantum well layers. We grew five periods of In0.06Ga0.94N/Al0.20Ga0.80N:In MQWs with In-doped barrier layers and obtained strong near-ultraviolet (UV) emission (similar to 400 nm) at room temperature. An In-doped AlGaN barrier improves the room-temperature PL intensity of InGaN/AlGaN MQWs, making it a candidate barrier for a near-UV source on Si substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality InGaAsP/InGaAsP multiple quantum wells ( MQWs) have been selectively grown by ultra-low-pressure (22 mbar) metal-organic chemical vapor deposition. A large bandgap energy shift of 46 nm and photoluminescence with FWHM less than 30 meV were obtained with a rather small mask width variation (15-30 mu m). In order to study the uniformity of the MQWs grown in the selective area, novel tapered masks were employed, and the transition effect W the tapered region was also studied. The energy detuning of the tapered region was observed to be saturated at larger ratios of the mask width to the tapered region length.