992 resultados para TRIGATE SOI MOSFETS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a simple but accurate semi analytical charge sheet model is presented for threshold voltage of accumulation mode polycrystalline silicon on insulator (PSOI) MOSFETs. In this model, we define the threshold voltage (V-T) of the polysilicon accumulation mode MOSFET as the gate voltage required to raise the surface potential (phi(s)) to a value phi(sT) necessary to overcome the charge trapping in the grain boundary and to create channel accumulation charge that is equal to the channel accumulation charge available in the case of single crystal silicon accumulation mode MOSFET at that phi(sT). The correctness of the model is demonstrated by comparing the theoretically estimated values of threshold voltage with the experimentally measured threshold voltages on the accumulation mode PSOI MOSFETs fabricated in the laboratory using LPCVD polysilicon layers doped with boron to achieve dopant densities in the range 3.3 x 10(-15)-5 x 10(17)/cm(3). Further, it is shown that the threshold voltage values of accumulation mode PSOI MOSFETs predicted by the present model match very closely with the experimental results, better than those obtained with the models previously reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel technology dependent scaling parameters i.e. spacer to gradient ratio and effective channel length (Leff) are proposed for source/drain engineered DG MOSFET, and their significance in minimizing short channel effects (SCES) in high-k gate dielectrics is discussed in detail. Results show that a high-k dielectric should be associated with a higher spacer to gradient ratio to minimise SCEs The analytical model agrees with simulated data over the entire range of spacer widths, doping gradients, high-k gate dielectrics and effective channel lengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of source/drain engineering on the performance of a six-transistor (6-T) static random access memory (SRAM) cell, based on 22 nm double-gate (DG) SOI MOSFETs, has been analyzed using mixed-mode simulation, for three different circuit topologies for low voltage operation. The trade-offs associated with the various conflicting requirements relating to read/write/standby operations have been evaluated comprehensively in terms of eight performance metrics, namely retention noise margin, static noise margin, static voltage/current noise margin, write-ability current, write trip voltage/current and leakage current. Optimal design parameters with gate-underlap architecture have been identified to enhance the overall SRAM performance, and the influence of parasitic source/drain resistance and supply voltage scaling has been investigated. A gate-underlap device designed with a spacer-to-straggle (s/sigma) ratio in the range 2-3 yields improved SRAM performance metrics, regardless of circuit topology. An optimal two word-line double-gate SOI 6-T SRAM cell design exhibits a high SNM similar to 162 mV, I-wr similar to 35 mu A and low I-leak similar to 70 pA at V-DD = 0.6 V, while maintaining SNM similar to 30% V-DD over the supply voltage (V-DD) range of 0.4-0.9 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose for the first time, an analytical model for short channel effects in nanoscale source/drain extension region engineered double gate (DG) SOI MOSFETs. The impact of (i) lateral source/drain doping gradient (d), (ii) spacer width (s), (iii) spacer to doping gradient ratio (s/d) and (iv) silicon film thickness (T-si), on short channel effects - threshold voltage (V-th) and subthreshold slope (S), on-current (I-on), off-current (I-on) and I-on/I-off is extensively analysed by using the analytical model and 2D device simulations. The results of the analytical model confirm well with simulated data over the entire range of spacer widths, doping gradients and effective channel lengths. Results show that lateral source/drain doping gradient along with spacer width can not only effectively control short channel effects, thus presenting low off-current, but can also be optimised to achieve high values of on-currents. The present work provides valuable design insights in the performance of nanoscale DG Sol devices with optimal source/drain engineering and serves as a tool to optimise important device and technological parameters for 65 nm technology node and below. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model for computing the generation-recombination noise due to traps within the semiconductor film of fully depleted silicon-on-insulator MOSFET transistors is presented. Dependence of the corner frequency of the Lorentzian spectra on the gate voltage is addressed in this paper, which is different to the constant behavior expected for bulk transistors. The shift in the corner frequency makes the characterization process easier. It helps to identify the energy position, capture cross sections, and densities of the traps. This characterization task is carried out considering noise measurements of two different candidate structures for single-transistor dynamic random access memory devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the analog performance of n-type triple-gate MuGFETs with high-k dielectrics and TiN gate material fabricated in 45 degrees rotated SOI substrates comparing their performance with standard MuGFETs fabricated without substrate rotation. Different fin widths are studied for temperatures ranging from 250 K up to 400 K. The results of transconductance, output conductance, transconductance over drain current ratio, intrinsic voltage gain and unit-gain frequency are studied. It is observed that the substrate rotation improves the carrier mobility of narrow MuGFETs at any temperature because of the changing in the conduction plane at the sidewalls from (1 1 0) to (1 0 0). For lower temperatures, the improvement of the carrier mobility of rotated MuGFETs is more noticeable as well as the rate of mobility improvement with the temperature decrease is larger. The output conductance is weakly affected by the substrate rotation. Although this improvement in the transconductance of rotated MuGFETs is negligibly transferred to the intrinsic voltage gain, the unity-gain frequency of rotated device is improved due to the larger carrier mobility in the entire range of temperatures studied. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an overview of the single-transistor memory cells (lT-DRAMs), which are based on floating-body effects in SOI MOSFETs. The typical device architectures, principles of operation and key mechanisms for programming are described. The various approaches (Z-RAM, MSDRAM, etc) are compared in terms of performance and potential for aggressive scaling. ©The Electrochemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mixed-mode simulation, where device simulation is embedded directly within a circuit simulator, is used for the first time to provide scaling guidelines to achieve optimal digital circuit performance for double gate SOI MOSFETs. This significant advance overcomes the lack of availability of SPICE model parameters. The sensitivity of the gate delay and on-off current ratio to each of the key geometric and technological parameters of the transistor is quantified. The impact of the source-drain doping profile on circuit performance is comprehensively investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, by investigating the influence of source/drain (S/D) extension region engineering (also known as gate-underlap architecture) in planar Double Gate (DG) SOI MOSFETs, we offer new design insights to achieve high tolerance to gate misalignment/oversize in nanoscale devices for ultra-low-voltage (ULV) analog/rf applications. Our results show that (i) misaligned gate-underlap devices perform significantly better than DC devices with abrupt source/drain junctions with identical misalignment, (ii) misaligned gate underlap performance (with S/D optimization) exceeds perfectly aligned DG devices with abrupt S/D regions and (iii) 25% back gate misalignment can be tolerated without any significant degradation in cut-off frequency (f(T)) and intrinsic voltage gain (A(VO)). Gate-underlap DG devices designed with spacer-to-straggle ratio lying within the range 2.5 to 3.0 show best tolerance to misaligned/oversize back gate and indeed are better than self-aligned DG MOSFETs with non-underlap (abrupt) S/D regions. Impact of gate length and silicon film thickness scaling is also discussed. These results are very significant as the tolerable limit of misaligned/oversized back gate is considerably extended and the stringent process control requirements to achieve self-alignment can be relaxed for nanoscale planar ULV DG MOSFETs operating in weak-inversion region. The present work provides new opportunities for realizing future ULV analog/rf design with nanoscale gate-underlap DG MOSFETs. (C) 2008 Elsevier Ltd. All rights reserved.