986 resultados para glomerulus basement membrane
Resumo:
The kidney filtration barrier consists of fenestrated endothelial cell layer, glomerular basement membrane and slit diaphragm (SD), the specialized junction between glomerular viscelar epithelial cells (podocytes). Podocyte injury is associated with the development of proteinuria, and if not reversed the injury will lead to permanent deterioration of the glomerular filter. The early events are characterized by disruption of the integrity of the SD, but the molecular pathways involved are not fully understood. Congenital nephrotic syndrome of the Finnish type (CNF) is caused by mutations in NPHS1, the gene encoding the SD protein nephrin. Lack of nephrin results in loss of the SD and massive proteinuria beginning before birth. Furthermore, nephrin expression is decreased in acquired human kidney diseases including diabetic nephropathy. This highlights the importance of nephrin and consequently SD in regulating the kidney filtration function. However, the precise molecular mechanism of how nephrin is involved in the formation of the SD is unknown. This thesis work aimed at clarifying the role of nephrin and its interaction partners in the formation of the SD. The purpose was to identify novel proteins that associate with nephrin in order to define the essential molecular complex required for the establishment of the SD. The aim was also to decipher the role of novel nephrin interacting proteins in podocytes. Nephrin binds to nephrin-like proteins Neph1 and Neph2, and to adherens junction protein P-cadherin. These interactions have been suggested to play a role in the formation of the SD. In this thesis work, we identified densin as a novel interaction partner for nephrin. Densin was localized to the SD and it was shown to bind to adherens junction protein beta-catenin. Furthermore, densin was shown to behave in a similar fashion as adherens junction proteins in cell-cell contacts. These results indicate that densin may play a role in cell adhesion and, therefore, may contribute to the formation of the SD together with nephrin and adherens junction proteins. Nephrin was also shown to bind to Neph3, which has been previously localized to the SD. Neph3 and Neph1 were shown to induce cell adhesion alone, whereas nephrin needed to trans-interact with Neph1 or Neph3 from the opposite cell surface in order to make cell-cell contacts. This was associated with the decreased tyrosine phosphorylation of nephrin. These data extend the current knowledge of the molecular composition of the nephrin protein complex at the SD and also provide novel insights of how the SD may be formed. This thesis work also showed that densin was up-regulated in the podocytes of CNF patients. Neph3 was up-regulated in nephrin deficient mouse kidneys, which share similar podocyte alterations and lack of the SD as observed in CNF patients podocytes. These data suggest that densin and Neph3 may have a role in the formation of morphological alterations in podocytes detected in CNF patients. Furthermore, this thesis work showed that deletion of beta-catenin specifically from adult mouse podocytes protected the mice from the development of adriamycin-induced podocyte injury and proteinuria compared to wild-type mice. These results show that beta-catenin play a role in the adriamycin induced podocyte injury. Podocyte injury is a hallmark in many kidney diseases and the changes observed in the podocytes of CNF patient share characteristics with injured podocytes observed in chronic kidney diseases. Therefore, the results obtained in this thesis work suggest that densin, Neph3 and beta-catenin participate in the molecular pathways which result in morphological alterations commonly detected in injured podocytes in kidney diseases.
Resumo:
The circulatory system consists of two vessel types, which act in concert but significantly differ from each other in several structural and functional aspects as well as in mechanisms governing their development. The blood vasculature transports oxygen, nutrients and cells to tissues whereas the lymphatic vessels collect extravasated fluid, macromolecules and cells of the immune system and return them back to the blood circulation. Understanding the molecular mechanisms behind the developmental and functional regulation of the lymphatic system long lagged behind that of the blood vasculature. Identification of several markers specific for the lymphatic endothelium, and the discovery of key factors controlling the development and function of the lymphatic vessels have greatly facilitated research in lymphatic biology over the past few years. Recognition of the crucial importance of lymphatic vessels in certain pathological conditions, most importantly in tumor metastasis, lymphedema and inflammation, has increased interest in this vessel type, for so long overshadowed by its blood vascular cousin. VEGF-C (Vascular Endothelial Growth Factor C) and its receptor VEGFR-3 are essential for the development and maintenance of embryonic lymphatic vasculature. Furthermore, VEGF-C has been shown to be upregulated in many tumors and its expression found to positively correlate with lymphatic metastasis. Mutations in the transcription factor FOXC2 result in lymphedema-distichiasis (LD), which suggests a role for FOXC2 in the regulation of lymphatic development or function. This study was undertaken to obtain more information about the role of the VEGF-C/VEGFR-3 pathway and FOXC2 in regulating lymphatic development, growth, function and survival in physiological as well as in pathological conditions. We found that the silk-like carboxyterminal propeptide is not necessary for the lymphangiogenic activity of VEGF-C, but enhances it, and that the aminoterminal propeptide mediates binding of VEGF-C to the neuropilin-2 coreceptor, which we suggest to be involved in VEGF-C signalling via VEGFR-3. Furthermore, we found that overexpression of VEGF-C increases tumor lymphangiogenesis and intralymphatic tumor growth, both of which could be inhibited by a soluble form of VEGFR-3. These results suggest that blocking VEGFR-3 signalling could be used for prevention of lymphatic tumor metastasis. This might prove to be a safe treatment method for human cancer patients, since inhibition of VEGFR-3 activity had no effect on the normal lymphatic vasculature in adult mice, though it did lead to regression of lymphatic vessels in the postnatal period. Interestingly, in contrast to VEGF-C, which induces lymphangiogenesis already during embryonic development, we found that the related VEGF-D promotes lymphatic vessel growth only after birth. These results suggest, that the lymphatic vasculature undergoes postnatal maturation, which renders it independent of ligand induced VEGFR-3 signalling for survival but responsive to VEGF-D for growth. Finally, we show that FOXC2 is necessary for the later stages of lymphatic development by regulating the morphogenesis of lymphatic valves, as well as interactions of the lymphatic endothelium with vascular mural cells, in which it cooperates with VEGFR-3. Furthermore, our study indicates that the absence of lymphatic valves, abnormal association of lymphatic capillaries with mural cells and an increased amount of basement membrane underlie the pathogenesis of LD. These findings have given new insight into the mechanisms of normal lymphatic development, as well as into the pathogenesis of diseases involving the lymphatic vasculature. They also reveal new therapeutic targets for the prevention and treatment of tumor metastasis and lymphatic vascular failure in certain forms of lymphedema. Several interesting questions were posed that still need to be addressed. Most importantly, the mechanism of VEGF-C promoted tumor metastasis and the molecular nature of the postnatal lymphatic vessel maturation remain to be elucidated.
Resumo:
Surface proteolysis is important in migration of cells through tissue barriers. In the case of prokaryotes, surface proteolysis has been associated with invasiveness of pathogenic bacteria from the primary infection site into circulation and secondary infection sites in the host. This study addressed surface proteases of two important bacterial pathogens, Yersinia pestis which is the causative agent of the lethal systemic zoonosis, plague, and Salmonella enterica serovar Typhimurium which is an oral-faecal pathogen that annually causes millions of cases of gastoenteritis that may develop to septicaemia. Both bacterial species express an ortholog of the omptin family of transmembrane β-barrel, outer membrane proteases/adhesins. This thesis work addressed the functions of isolated plasminogen activator Pla of Y. pestis and the PgtE omptin of S. enterica. Pla and PgtE were isolated as His6-fusion proteins in denaturing conditions from recombinant Escherichia coli and activated by adding lipopolysaccharide (LPS). The structural features in LPS that enhance plasminogen activation by His6-Pla were determined, and it was found that the lack of O-specifi c chain, the presence of outer core oligosaccharide, the presence of phosphates in lipid A, as well as a low level of acylation in lipid A influence the enhancement of Pla activity by LPS. A conserved lipid A phosphate binding motif in Pla and PgtE was found important for the enhancement of enzymatic activity by LPS. The results help to explain the biological signifi cance of the genetic loss of the O-specifi c chain biosynthesis in Y. pestis as well as the variations in LPS structure upon entry of Y. pestis into the human host. Expression of Pla in Y. pestis is associated with adhesiveness to lamin of basement membranes. Here, isolated and LPS-activated His6-Pla was coated onto fluorescent microparticles. The coating conferred specifi c adhesiveness of the particles to laminin and reconstituted basement membrane, thus confi rming the intrinsic adhesive characteristics of the Pla protein. The adhesiveness is thought to direct plasmin proteolysis at tissue barriers, thus increasing tissue damage and bacterial spread. Gelatinase activity has not been previously reported in enteric bacteria. Expression of PgtE in S. enterica was associated with cleavage of porcine skin gelatin, denaturated human type I collagen, as well as DQ-gelatin. Purifi ed His6-PgtE also degraded porcine skin gelatin and human type I gelatin but did not react with DQ-gelatin, indicating that minor differences are seen in proteolysis by isolated and cell-bound PgtE. Pla was less effective in gelatin degradation. The novel gelatinase activity in S. enterica is likely to enhance bacterial dissemination during infection.
Resumo:
Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.
Resumo:
The prevalence of variegate porphyria (VP) (2.1:100 000, in 2006 n=108) was higher in Finland than elsewhere in European countries due to a founder effect (R152C). The incidence of VP was estimated at 0.2:1 000 000 based on the number of new symptomatic patients yearly. The prevalence of porphyria cutanea tarda (PCT) was 1.2:100 000 (in 2006 n=63), which is only one fourth of the numbers reported from other European countries. The estimated incidence of PCT was 0.5:1 000 000. Based on measurements of the uroporphyrinogen decarboxylase activity in erythrocytes, the proportion of familial PCT was 49% of the cases. The prevalence of erythropoietic protoporphyria (EPP) was at 0.8:100 000 (in 2006 n=39) including asymptomatic carriers of a mutation in the ferrochelatase (FECH) gene. The incidence of EPP was estimated at 0.1:1 000 000. After 1980 the penetrance was 37% among patients with VP. Of the mutation carriers (n=57) 30% manifested with skin symptoms. Frequency of skin symptom as only clinical sign was stable before or after 1980 (22% vs. 21%), but acute attacks became infrequent (29% vs. 7%). Of the symptomatic patients 30% had both acute attacks and skin symptoms and 80% had skin symptoms. Fragility (95%) and blistering (46%) of the skin in the backs of the hands were the most common skin symptoms. Transient correction of porphyrin metabolism using eight haem arginate infusions within five weeks had no effect on the skin symptoms in three of four patients with VP. In one case skin symptoms disappeared transiently. One patient with homozygous VP had severe photosensitivity since birth. Sensory polyneuropathy, glaucoma and renal failure developed during the 25-year follow-up without the presence of acute attacks. The I12T mutation was detected in both of his alleles in the protoporphyrinogen oxidase gene. Lack of skin symptoms and infrequency of acute attacks (1/9) in the patients with I12T mutation at the heterozygous stage indicate a mild phenotype (the penetrance 11%). Four mutations (751delGAGAA, 1122delT, C286T, C343T) in the FECH gene were characterised in four of 15 families with EPP. Burning pain (96%) and swelling (92%) of the sun-exposed skin were the major skin symptoms. Hepatopathy appeared in one of 25 symptomatic patients (4%). Clinical manifestations and associated factors of PCT were similar in the sporadic and familial types of PCT. The majority of the patients with PCT had one to three precipitating factors: alcohol intake (78%), mutations in hemochromatosis associated gene (50%), use of oestrogen (25% of women) and hepatitis B or C infections (25 %). Fatty liver disease (67%) and siderosis (67%) were commonly found in their liver biopsies. The major histopathological change of the sun-exposed skin in the patients with VP (n=20), EPP (n=8) and PCT (n=5) was thickening of the vessel walls of the upper dermis suggesting that the vessel wall is the primary site of the phototoxic reaction in each type of porphyria. The fine structure of the vessel walls was similar in VP, EPP and PCT consisting of the multilayered basement membrane and excess of finely granular substance between the layers which were surrounded by the band of homogenous material. EPP was characterised by amorphous perivascular deposits extending also to the extravascular space. In direct immunofluorescence study homogenous IgG deposits in the vessel walls of the upper dermis of the sun-exposed skin were demonstrated in each type of porphyria. In EPP the excess material around vessel walls consisted of other proteins such as serum amyloid protein, and kappa and lambda light chains in addition to the basement membrane constituents such as collagen IV and laminin. These results suggest that the alterations of the vessel walls are a consequence of the repeated damage and the repairing process in the vessel wall. The microscopic alterations could be demonstrated even in the normal looking but sun-exposed skin of the patients with EPP during the symptom-free phase suggesting that vascular change can be chronic. The stability of vascular changes in the patients with PCT after treatment indicates that circulating porphyrins are not important for the maintenance of the changes.
Resumo:
The objective of these studies was to evaluate possible airway inflammation and remodeling at the bronchial level in cross-country skiers without a prior diagnosis of asthma, and relate the findings to patients with mild chronic asthma and patients with newly diagnosed asthma. We also studied the association of airway inflammatory changes and bronchial hyperresponsivess (BHR), and treatment effects in cross-country skiers and in patients with newly diagnosed asthma. Bronchial biopsies were obtained from the subjects by flexible bronchoscopy, and the inflammatory cells (eosinophils, mast cells, T-lymphocytes, macrophages, and neutrophils) were identified by immunohistochemistry. Tenascin (Tn) immunoreactivity in the bronchial basement membrane (BM) was identified by immunofluorescence staining. Lung function was measured with spirometry, and BHR was assessed by methacholine (skiers) or histamine (asthmatics) challenges. Skiers with BHR and asthma-like symptoms were recruited to a drug-intervention study. Skiers were given treatment (22 weeks) with placebo or budesonide (400 µg bid). Patients with newly diagnosed asthma were given treatment for 16 weeks with placebo, salmeterol (SLM) (50 µg bid), fluticasone propionate (FP) (250 µg bid), or disodium cromoglicate (DSCG) (5 mg qid). Bronchial biopsies were obtained at baseline and at the end of the treatment period. In the skiers a distinct airway inflammation was evident. In their bronchial biopsy specimens, T-lymphocyte, macrophage, and eosinophil counts were, respectively greater by 43-fold (P<0.001), 26-fold (P<0.001, and 2-fold (P<0.001) in skiers, and by 70-fold (p>0.001), 63-fold (P<0.001), and 8-fold (P<0.001) in asthmatic subjects than in controls. In skiers, neutrophil counts were more than 2-fold greater than in asthmatic subjects (P<0.05). Tn expression was higher in skiers than in controls and lower in skiers than in mild asthmatics. No significant changes were seen between skiers with or without BHR in the inflammatory cell counts or Tn expression. Treatment with inhaled budesonide did not attenuate asthma-like symptoms, the inflammatory cell infiltration, or BM Tn expression in the skiers. In newly diagnosed asthmatic patients, SLM, FP, and DSCG reduced asthma symptoms, and need for rescue medication (P<0.04). BHR was reduced by doubling doses 2.78, 5.22, and 1.35 respectively (all P<0.05). SLM and placebo had no effect on cell counts or Tn expression. FP and DSCG reduced eosinophil counts in the bronchial biopsy specimens (P<0.02 and <0.048, respectively). No significant change in tenascin expression appeared in any treatment group. Regarding to atopy, no significant differences existed in the inflammatory cell counts in the bronchial mucosa of subjects with newly diagnosed asthma or in elite cross country skiers. Tn expression in the BM was significantly higher in atopic asthma than in those with nonatopic asthma. Airway inflammation occurred in elite cross-country skiers with and without respiratory symptoms or BHR. Their inflammatory cell pattern differed from that in asthma. Infiltration with eosinophils, macrophages, and mast cells was milder, but lymphocyte counts did not differ from counts in asthmatic airways. Neutrophilic infiltration was more extensive in skiers than in asthmatics. Remodeling took place in the skiers’ airways, as reflected by increased expression of BM tenascin These inflammatory changes and Tn expression may be caused by prolonged exposure of the lower airways to inadequately humidified cold air. In skiers inflammatory changes and remodeling were not reversed with anti-inflammatory treatment. In contrast, in patients with newly diagnosed asthma, anti-inflammatory treatment did attenuate eosinophilic inflammation in the bronchial mucosa. In skiers, anti-inflammatory treatment did not attenuate BHR as it did in asthmatic patients. The BHR in skiers was attenuated spontaneously during placebo treatment, with no difference from budesonide treatment. Lower training intensity during the treatment period may explain this spontaneous decrease in BHR. The origin of BHR probably differs in skiers and in asthmatics. No significant association between BHR and inflammatory cell counts or between BHR and Tn expression was evident in cross-country skiers or asthmatic subjects. Airway remodeling differed between atopic and nonatopic asthma. As opposed to nonatopic asthma, Tn expression was higher in atopic asthma and is related to inflammatory cell densities.
Resumo:
Sjögren s syndrome (SS) is a strongly female dominant autoimmune disease. SS targets mainly salivary and lacrimal glands and leads to loss of the secreting acinar cells of these glands. Accordingly, secretion of the affected glands is diminished and the main symptoms of SS, dryness of mouth and eyes, follow. In addition to these sicca symptoms, SS patients suffer from severe fatigue and can have various extraglandular symptoms. To date, the etiology of SS still remains unknown. Female dominance and the late onset of the disease simultaneously with remarkable hormonal changes in the body (menopause, adrenopause) encouraged us to hypothesize that sex steroids, especially androgens, are involved in the onset and progression of SS. We confirmed our hypothesis and showed that patients with SS suffer from androgen depletion both systemically and locally in the target tissue of SS, salivary glands. We especially focused on the local androgen environment in salivary glands and demonstrated that healthy salivary glands contain a complete enzymatic machinery for local synthesis of androgens and estrogens from pro-hormone dehydroepiandrosterone (DHEA). However, in SS salivary glands the enzymes catalyzing the local androgen synthesis are defective and, in a subgroup of patients, practically non-functional. Probably due to this local defect in DHEA processing, therapy with DHEA was found unbeneficial for SS patients in the treatment of fatigue. We also studied the effect of the local androgen depletion on salivary glands. We found that in salivary gland cells and healthy labial salivary glands androgens upregulate integrin subunits α1 and α2, which are important for the communication, differentiation and function of the acinar cells. On the contrary, in SS salivary glands DHEA failed to upregulate these signaling molecules, again probably due to defective processing of DHEA into active androgens. Our finding highlights the importance of the local androgen environment and local DHEA processing for the function and welfare of salivary glands. In conclusion, this study showed that patients with SS are androgen depleted both systemically and locally in salivary glands. SS patients also have a defective local sex steroid synthesizing enzymatic machinery further impairing the local androgen depletion. We also showed that the local androgen defect leads to decreased expression of acinar cell specific integrin molecules, which impairs the signaling between the acinar cells and basement membrane and might thus explain the acinar cell loss seen in SS salivary glands. By showing the importance of the local sex steroid imbalance in SS we have clarified some etiopathogenetic mechanisms of SS, which have thus far remained unknown.
Resumo:
Cancer is becoming the leading cause of deaths in the world. As 90% of all deaths from cancer are caused by metastasis, discovery of the mechanisms behind cancer cell invasion and metastasis is of utmost importance. Only new effective therapies targeting cancer progression can reduce cancer mortality rates. The aim of this study was to identify molecules that are relevant for tumor cell invasion and spreading in fibrosarcomas and melanomas, and to analyze their potential for cancer biomarkers or therapeutic targets. First, the gene expression changes of normal cells and transformed cells showing high invasiveness, S-adenosylmethionine decarboxylase (AdoMetDC)-transfected murine fibroblasts and human melanoma cells, were studied by microarray analyses. The function of the identified candidate molecules were then studied in detail in these cell lines. Finally, the physiological relevance of the identified changes was studied by immunohistochemical analyses of human sarcoma and melanoma specimens or by a mouse xenograft model. In fibrosarcoma cells, the most remarkable change detected was a dramatic up-regulation of the actin-sequestering molecule thymosin beta 4 (TB4), which was shown to be important for the transformed phenotype of the AdoMetDC-transfected cells (Amdc-s and -as). A sponge toxin latrunculin A, inhibiting the binding of TB4 to actin, was found to selectively inhibit the migration and invasion of these cells. Further, Amdc-s-induced mouse tumors and human high-grade sarcomas were found to show intense TB4 immunostaining. In addition to TB4, integrin subunits alfa 6 and beta 7 (ItgA6 and ItgB7) were found to be up-regulated in Amdc-s and -as cells. ItgA6 was shown to dimerize mainly with ItgB1 in Amdc-s. Inhibition of ItgA6 or ItgB1 function with neutralizing antibodies fully blocked the invasiveness of Amdc-s cells, and importantly also human HT-1080 fibrosarcoma cells, in three-dimensional (3D)-Matrigel mimicking tumor extracellular matrix (ECM). By immunohistochemical analyses, strong staining for ITGA6 was detected in human high-grade fibrosarcomas and other sarcomas, especially at the invasion fronts of the tumors. In the studied melanoma cell lines, the expression levels of the adhesion-related ECM proteins tenascin-C (TN-C), fibronectin (FN), and transforming growth factor beta-induced (TGFBI) were found to be highly up-regulated. By immunohistochemistry, intense TN-C and FN staining was detected in invasive and metastatic melanoma tumors, showing co-localization (together with procollagen-I) in tubular meshworks and channels around the invading melanoma cells. In vitro, TN-C and FN were further found to directly stimulate the migration of melanoma cells in 3D-collagen-I matrix. The third candidate protein, TGFBI, was found to be an anti-adhesive molecule for melanoma cells, and knockdown of its expression in metastatic melanoma cells (TGFBI-KD cells) led to dramatically impaired tumor growth in immunocompromized mice. Interestingly, the control tumors showed intense TGFBI immunostaining in the invasion fronts, showing partial co-localization with the fibrillar FN staining, whereas the small TGFBI-KD cell-induced tumors displayed amorphous, non-fibrillar FN staining. These data suggest an important role for TGFBI in FN fibrillogenesis and melanoma progression. In conclusion, we have identified several invasion-related molecules, which show potential for cancer diagnostic or prognostic markers, or therapeutic targets. Based on our previous and present fibrosarcoma studies, we propose the possibility of using ITGA6 antagonists (affecting tumor cell adhesion) in combination with TB4 inhibitors (affecting tumor cell migration) and cathepsin L inhibitors (affecting the degradation of basement membrane and ECM proteins) for the treatment of fibrosarcomas and other tumors overexpressing these molecules. With melanoma cells, in turn, we point to the importance of three secreted ECM proteins, TN-C, FN, and TGFBI, in melanoma progression. Of these, especially the potential of TN-C as a prognostic melanoma biomarker and TGFBI as a promising therapeutic target molecule are clearly worth additional studies.
Resumo:
Asthma is a chronic inflammatory disorder of the airways. Remodelling in asthma is defined as the structural changes seen in the airways of asthmatics in comparison to healthy controls. Progressive loss of lung function also seen in asthma might be caused by remodelling. The research aims of this thesis were to investigate inflammation and remodelling in the airways of different types of asthmatics and smokers. The association between inflammation and remodelling was also examined in a mouse model of allergic airway inflammation. Healthy smokers showed increased numbers of macrophages in the BAL with no changes in the inflammatory cells in biopsies. Macrophages seemed to be quite quiescent, since mRNA expression for a wide variety of inflammatory mediators, especially chemokines CCL3, CCL4, CCL5 and CCL20, secreted by macrophages was significantly lower than in healthy non-smokers. Attenuated macrophage activity in the airway lumen may render smokers more susceptible to airway infections and have an impact on the development of other airway pathology. Patients with diisocyanate-induced asthma (DIA) on inhaled corticosteroids (ICS) who still had non-specific bronchial hyperreactivity (NSBHR) at the end of the follow-up showed increased expression of TNF-α, IL-6 and IL-15 mRNA in BAL cells compared to those without NSBHR. In addition to being markers for poor prognosis and possible slight glucocorticoid resistance, these cytokines might aid in guiding the treatment of DIA. The increase in the thickness of tenascin-C layer in the bronchial basement membrane (BM) was much less than usually seen in other types of asthma, which might not make tenascin-C a good marker for DIA. OVA-induced tenascin-C expression in the lung was attenuated in STAT4-/- mice with impaired Th1-type immunity compared to WT mice. Interestingly, STAT6-/- mice with impaired Th2-type immunity showed tenascin-C expression levels similar to those of WT mice. The clearest difference between these two knockout strains in response to OVA was that STAT4-/- mice exhibited no upregulation of IFN-γ and TNF-α mRNA expression. Thus, tenascin-C expression was unexpectedly more related to Th1 type reactions. In vitro studies confirmed the results. Human fibroblasts stimulated by TNF-α and IFN-γ showed increased expression of tenascin-C. Patients with newly diagnosed asthma showed increased expression of laminin α2 in the bronchial BM in comparison to patients with asthma symptoms only and healthy controls. Both patients with asthma and those with only asthma symptoms showed increased expression of the laminin β2 chain in comparison to controls. Thus, laminin α2 expression differentiated patients with clinical asthma from patients with symptoms only. Furthermore, the expression of laminin α2 and β2 was associated with NSBHR, linking very specific remodelling events to clinical findings.
Resumo:
Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
Resumo:
Liza parsia were exposed to sublethal (0.02 ppm) concentration of DDT for 15 days. The gill responded initially with copious secretion of mucus, oedematous separation of epithelial cells from the basement membrane and fusion of secondary gill lamellae. Hyperplasia of the cells lining primary gill lamellae and lamellar telangiectases (or aneurysms) was frequently seen after day 10 of exposure. Kidney exhibited hypertrophy of the epithelial cells lining proximal convoluted tubules which was followed by shrinkage in glomerular tufts, increase in Bowman's space, appearance of amorphous eosinophilic materials in the lumina of the tubules and focal necrosis on day 10 of the treatment. Hyaline droplets and casts were also encountered in the epithelial cells and lumina of the proximal tubules. Liver revealed an initial dilation of canaliculi and increased secretion of bile. Thereafter, the displacement of nuclei towards periphery of the hepatocytes, disorganization of blood sinusoids, pyknotic changes in nuclei, cytolysis and vacuolation as well as focal necrosis were noticed after day 10 of the intoxication.
Resumo:
Incisional wounds of the same length and depth were made on skin between dorsal fin and the lateral line canal of Clarias batrachus and the pattern of wound closure has been studied histologically. Following infliction, a marked change in the colour of the skin surrounding the wound was observed which lasted for about 30 h and restored thereafter. Mucus and blood cells plugged the wound gap shortly after infliction. The epidermis surrounding the wound was found to be detached from the basement membrane. Mass movement of epidermal cells was observed from both side of the wound gap. The epidermal cells at the margin of the wound became hypertrophied. The epidermis became normal by 32 days. The dealing of sub-epidermal tissue indicated degenerative and regenerative changes of muscle fibres. The mucus and blood cells were accumulated in the wound gap and later fine blood vessels were formed. Gradually granulation tissue was formed and fibroblasts and myoblasts appeared. Myoblast differentiated into muscle bundles. The epidermal repair was completed within 35 days.
Resumo:
Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome (AS), thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane (GBM) findings. Secondary FSGS is known to develop in classic AS at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical finding at diagnosis was proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic-range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin GBM, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.
Resumo:
The ability of tissue engineered constructs to replace diseased or damaged organs is limited without the incorporation of a functional vascular system. To design microvasculature that recapitulates the vascular niche functions for each tissue in the body, we investigated the following hypotheses: (1) cocultures of human umbilical cord blood-derived endothelial progenitor cells (hCB-EPCs) with mural cells can produce the microenvironmental cues necessary to support physiological microvessel formation in vitro; (2) poly(ethylene glycol) (PEG) hydrogel systems can support 3D microvessel formation by hCB-EPCs in coculture with mural cells; (3) mesenchymal cells, derived from either umbilical cord blood (MPCs) or bone marrow (MSCs), can serve as mural cells upon coculture with hCB-EPCs. Coculture ratios between 0.2 (16,000 cells/cm2) and 0.6 (48,000 cells/cm2) of hCB-EPCs plated upon 3.3 µg/ml of fibronectin-coated tissue culture plastic with (80,000 cells/cm2) of human aortic smooth muscle cells (SMCs), results in robust microvessel structures observable for several weeks in vitro. Endothelial basal media (EBM-2, Lonza) with 9% v/v fetal bovine serum (FBS) could support viability of both hCB-EPCs and SMCs. Coculture spatial arrangement of hCB-EPCs and SMCs significantly affected network formation with mixed systems showing greater connectivity and increased solution levels of angiogenic cytokines than lamellar systems. We extended this model into a 3D system by encapsulation of a 1 to 1 ratio of hCB-EPC and SMCs (30,000 cells/µl) within hydrogels of PEG-conjugated RGDS adhesive peptide (3.5 mM) and PEG-conjugated protease sensitive peptide (6 mM). Robust hCB-EPC microvessels formed within the gel with invasion up to 150 µm depths and parameters of total tubule length (12 mm/mm2), branch points (127/mm2), and average tubule thickness (27 µm). 3D hCB-EPC microvessels showed quiescence of hCB-EPCs (<1% proliferating cells), lumen formation, expression of EC proteins connexin 32 and VE-cadherin, eNOS, basement membrane formation by collagen IV and laminin, and perivascular investment of PDGFR-β+/α-SMA+ cells. MPCs present in <15% of isolations displayed >98% expression for mural markers PDGFR-β, α-SMA, NG2 and supported hCB-EPC by day 14 of coculture with total tubule lengths near 12 mm/mm2. hCB-EPCs cocultured with MSCs underwent cell loss by day 10 with a 4-fold reduction in CD31/PECAM+ cells, in comparison to controls of hCB-EPCs in SMC coculture. Changing the coculture media to endothelial growth media (EBM-2 + 2% v/v FBS + EGM-2 supplement containing VEGF, FGF-2, EGF, hydrocortisone, IGF-1, ascorbic acid, and heparin), promoted stable hCB-EPC network formation in MSC cocultures over 2 weeks in vitro, with total segment length per image area of 9 mm/mm2. Taken together, these findings demonstrate a tissue engineered system that can be utilized to evaluate vascular progenitor cells for angiogenic therapies.
Resumo:
Mural cells (smooth muscle cells and pericytes) regulate blood flow and contribute to vessel stability. We examined whether mural cell changes accompany age-related alterations in the microvasculature of the central nervous system. The retinas of young adult and aged Wistar rats were subjected to immunohistofluorescence analysis of a-smooth muscle actin (SMA), caldesmon, calponin, desmin, and NG2 to identify mural cells. The vasculature was visualized by lectin histochemistry or perfusion of horse-radish peroxidase, and vessel walls were examined by electron microscopy. The early stage of aging was characterized by changes in peripheral retinal capillaries, including vessel broadening, thickening of the basement membrane, an altered length and orientation of desmin filaments in pericytes, a more widespread SMA distribution and changes in a subset of pre-arteriolar sphincters. In the later stages of aging, loss of capillary patency, aneurysms, distorted vessels, and foci of angiogenesis were apparent, especially in the peripheral deep vascular plexus. The capillary changes are consistent with impaired vascular autoregulation and may result in reduced pericyte-endothelial cell contact, destabilizing the capillaries and rendering them susceptible to angiogenic stimuli and endothelial cell loss as well as impairing the exchange of metabolites required for optimal neuronal function. This metabolic uncoupling leads to reactivation of