999 resultados para light rail
Resumo:
A simple procedure for obtaining a background-free backscattering spectrum of a light-mass film on a heavy-mass substrate by a normal incidence/grazing exit geometry has been described. Using this method such films can be aligned rapidly and accurately, and the impurity or defect information on the films can be obtained without need for realignment. Example is given from MeV Li-3+ analysis of a deposited film of Si on a single crystal substrate of yttria-stabilized, cubic zirconia.
Resumo:
Hot electrons excited from the valence band by linearly polarized laser light are characterized by certain angular distributions in momenta. Owing to such angular distributions in momenta, the photoluminescence from the hot electrons shows a certain degree of polarization. A theoretical treatment of this effect observed in the photoluminescence in quantum wells is given, showing that the effect depends strongly on heavy and light hole mixing. The very large disparity between the experimentally observed and theoretically expected values of the degree of polarization in the hot-electron photoluminescence suggests the presence of random quasielastic scattering. The effects of such additional scattering and the presence of a perpendicular magnetic field are incorporated into the theory. it is shown that the measurements of the degree of polarization observed in the hot electron photoluminescence, with and without an applied perpendicular magnetic field can serve to determine the time constants for both LO-phonon inelastic and random quasielastic scattering. As an example, these time constants are determined for the experiments reported in the literature.
Resumo:
A GaAs/GaAlAs graded-index separate confinement single quantum well heterostructure single-mode ridge waveguide electroabsorption modulator was fabricated and investigated. For the modulator with a quantum well width of 100 angstrom and device length of 700-mu-m, an on/off ratio of 29.7 dB and estimated absorption insertion loss of 3 dB were obtained for TE polarised light with wavelength 8650 angstrom, and for TM polarisation the on/off ratio was 28.5 dB. With a switching voltage of 1 V, an on/off ratio of 15 dB was achieved. Photocurrent spectra exhibited a red shift of 600 angstrom of the absorption edge when the voltage applied to the PIN diode was varied from 0.5 to -7 V. The corresponding shift of the room temperature exciton peak energy was 96 meV.
Resumo:
Three different types of GaAs metal-semiconductor field effect transistors (MESFET) by employing ion implantation, molecular beam epitaxy (MBE) and low-temperature MBE (LT MBE) techniques respectively were fabricated and studied in detail. The backgating (sidegating) measurement in the dark and in the light were carried out. For the LT MBE-GaAs buffered MESFETs, the output resistance R(d) and the peak transconductance g(m) were measured to be above 50 k Omega and 140 mS/mm, respectively, and the backgating and light sensitivity were eliminated. A theoretical model describing the light sensitivity in these kinds of devices is given. and good agreement with experimental data is reached.
Resumo:
We solve the single mode coupled rate equations by computer, simulate the behavior of a gain switch of an AlGalnP red light semiconductor laser diode, and find the characteristic of FWHM of pulses changing with the amplitude of modulation signal, the bias current, and the modulated frequency. On this basis, we conduct experiments. The experiment results accord with the simulations well.
Resumo:
The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic optical damage (COD) level of devices, a nonabsorbing window (NAW), which was based on Zn diffusion-induced quantum well intermixing, was fabricated near the both ends of the cavities. Zn diffusions were respectively carried out at 480, 500, 520, 540, and 580 Celsius degree for 20 minutes. The largest energy blue shift of 189.1 meV was observed in the window regions at 580 Celsius degree. When the blue shift was 24.7 meV at 480 Celsius degree, the COD power for the window LD was 86.7% higher than the conventional LD.
Resumo:
This paper reports on the design, fabrication, and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application. This paper mainly aims at two aspects. One is to improve the optical coupling between the laser and modulator; another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator. The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA. Output power at 100mA is more than 10mW. The extinction characteristics,modulation bandwidth, and electrical return loss are measured. 3dB bandwidth more than 10GHz is monitored.
Resumo:
The n-type GaAs substrates are used and their conductive type is changed to p-type by tunnel junction for AlGaInP light emitting diodes (TJ-LED), then n-type GaP layer is used as current spreading layer. Because resistivity of the n-type GaP is lower than that of p-type, the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n-type GaP current spreading layer. For TJ-LED with 3μm n-type GaP current spreading layer, experimental results show that compared with conventional LED with p-type GaP current spreading layer, light output power is increased for 50% at 20mA and for 66.7% at 100mA.
Resumo:
国家自然科学基金
Resumo:
In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.
Resumo:
The semiconductor microlasers based on the equilateral triangle resonator (ETR) can be fabricated from the edge-emitting laser wafer by dry-etching technique, and the directional emission can be obtained by connecting an output waveguide to one of the vertices of the ETR. We investigate the mode characteristics, especially the mode quality factor, for the ETR with imperfect vertices, which is inevitable in the real technique process. The numerical simulations show that the confined modes can still have a high quality factor in the ETR with imperfect vertices. We can expect that the microlasers is a suitable light source for photonic integrated circuits.
Resumo:
Electroabsorption (EA) modulator integrated with partially gain coupling distributed feedback (DFB) lasers have been fabricated and shown high single mode yield and wavelength stability. The small signal bandwidth is about 7.5 GHz. Strained Si1-chiGechi/Si multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetectors with SiO2/Si distributed Bragg reflector (DBR) as the mirrors have been fabricated and shown a clear narrow bandwidth response. The external quantum efficiency at 1.3 mum is measured to be about 3.5% under reverse bias of 16 V. A novel GaInNAs/GaAs MQW RCE p-i-n photodetector with high reflectance GaAs/ALAs DBR mirrors has also been demonstrated and shown the selectively detecting function with the FWHM of peak response of 12 nm.