998 resultados para Si-doping
Resumo:
Electrical measurements were combined with surface techniques to study the Pt/Si interfaces at various silicide formation temperatures. Effects of deep centers on the Schottky barrier heights were studied. Hydrogen plasma treatment was used to passivate the impurity/defect centers at the interfaces, and the effects of hydrogenation on the Schottky barrier heights were also examined. Combining our previous study on the Pt/Si interfacial reaction, factors influencing the PtSi/Si Schottky barrier diode are discussed.
Resumo:
Two samples of nominal 20-period Ge0.20Si0.80(5 nm)/Si(25 nm) and Ge0.5Si0.5(5 nm)/Si(25 nm) strained-layer superlattices (SLSs) were studied by the double-crystal X-ray diffraction method. It is convenient to define the perpendicular strains relative to the average crystal. Computer simulations of the rocking curves were performed using a kinematical step model. An excellent agreement between the measured and simulated satellite patterns is achieved. The dependence of the sensitivity of the rocking curves to the structural parameters of the SLS, such as the alloying concentration x and the layer thicknesses and the L component of the reflection g = (HKL), are clearly demonstrated.
Resumo:
Solid films containing phosphorus impurities were formed on p-type silicon wafer surface by traditional spin-on of commercially available dopants. The doping process is accomplished by irradiating the sample with a 308 nm XeCl pulsed excimer laser. Shallow junctions with a high concentration of doped impurities were obtained. The measured impurity profile was ''box-like'', and is very suitable for use in VLSI devices. The characteristics of the doping profile against laser fluence (energy density) and number of laser pulses were studied. From these results, it is found that the sheet resistance decreases with the laser fluence above a certain threshold, but it saturates as the energy density is further increased. The junction depth increases with the number of pulses and the laser energy density. The results suggest that this simple spin-on dopant pre-deposition technique can be used to obtain a well controlled doping profile similar to the technique using chemical vapor in pulsed laser doping process.
Resumo:
A matrix formulation has been developed and applied to simulate large-angle convergent-beam electron diffraction (LACBED) patterns from the Si/GexSi1-x strained layer superlattice (SLS). Good quantitative agreement has been achieved between experimental and simulated patterns. By utilizing dynamical HOLZ line patterns, we demonstrate that an accuracy of better than 0.1% can be achieved in the determination of the averaged lattice constant of a SLS, and the averaged number of layers of atoms within one period of SLS can be determined up to a single monolayer.
Resumo:
The Pb-doped BiSrCaCuO superconducting films were grown by the single source mixed evaporation technique. The microbridges of dimensions 50 mum x 40 mum were fabricated by standard photolithography technologies. Si films with a thickness of 2500 angstrom were deposited on the microbridge area surfaces of BiPbSrCaCuO superconducting films by rf-magnetron sputtering. A greatly lowered zero resistance temperature of the microbridge area of the BiPbSrCaCuO film after Si sputtering was found. A non-linear effect of the current-voltage (I-V) characteristics at 78 K was shown. The high-frequency capacitance-voltage (C-V) curve of this structure at 78 K was symmetrical with the maximum capacitance at V = 0, and the capacitance decreased with increasing applied bias voltage. Afl experimental results are discussed.
Resumo:
The interfacial reactions between thin films of cobalt and silicon and (100)-oriented GaAs substrates in two configurations, Co/Si/GaAs and Si/Co/GaAs, were studied using a variety of techniques including Auger electron spectroscopy, x-ray diffraction, and transmission electron microscopy. The annealing conditions were 200, 300, 400, 600-degrees-C for 30 min, and rapid thermal annealing for 15 s. It was found that Si layer in the Co/Si/GaAs system acts as a barrier at the interface between Co and GaAs when annealed up to 600-degrees-C. The interfacial reaction between Co and Si is faster than that between Co and GaAs in the system of Si/Co/GaAs. The sequence of compound formation for the two metallizations studied (Co/Si/GaAs and Si/Co/GaAs) depends strongly on the sample configuration as well as the layer thickness of Si and Co (Co/Si atomic ratio). From our results, it is promising to utilize Co/Si/GaAs multilayer film structure to make a CoSi2/GaAs contact, and this CoSi2 may offer an alternative to the commonly used W silicides as improved gate metallurgies in self-aligned metal-semiconductor field effect transistor (MESFET) technologies.
Resumo:
The growth of high quality AlGaAs by CBE bas been limited by the high levels of carbon and oxygen contamination. The use of alane based precursors offers a significant reduction in such contamination. We report for the first time the CBE growth of AlxGa1-xAs from triethylgallium, dimethylethylamine-alane and arsine, and compare with. growth from triethylgallium, trimethylamine-alane and arsine. Some preliminary results of work on the CBE growth of GaAs on silicon will also be reported.
Resumo:
Molecular beam epitaxy GaAs films on Si, with thicknesses ranging from 0.9-2.0-mu-m, were implanted with Si ions at 1.2-2.6 MeV to doses in the range 10(15)-10(16) cm-2. Subsequent rapid infrared thermal annealing was carried out at 850-degrees-C for 15 s in a flowing N2 atmosphere. Crystalline quality was analyzed by using Rutherfold backscattering/channeling technique and Raman scattering spectrometry. The experimental results show that the recrystallization process greatly depends on the dose and energy of implanted ions. Complete recrystallization with better crystalline quality can be obtained under proper implantation and subsequent annealing. In the improved layer the defect density was much lower than in the as-grown layer, especially near the interface.
Resumo:
The transient current response of a-Si:H in both p/i/n and n/i/n structures has been measured as a function of pulse intermittence and pulse amplitude. The results are consistent with the picture that in p/i/n samples the peculiar current response is caused by the competing contributions of electrons and holes which show themselves in different time scales.
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.
Resumo:
We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.
Resumo:
GaAs films made by molecular beam epitaxy with thicknesses ranging from 0.9 to 1.25-mu-m on Si have been implanted with Si ions at 1.2 MeV to dose of 1 x 10(15)/cm2. A rapid infrared thermal annealing and white light annealing were then used for recrystallization. Crystalline quality was analysed by using backscattering channeling technique with Li ion beam of 4.2 MeV. The experimental results show that energy selection is important for obtaining better and uniform recrystallized GaAs epilayers.
Resumo:
Interfacial formation processes and reactions between Au and hydrogenated amorphous Si have been studied by photoemission spectroscopy and Auger electron spectroscopy. A three-dimensional growth of Au metal cluster occurs at initial formation of the Au/a-Si:H interface. When Au deposition exceeds a critical time, Au and Si begin interdiffusing and react to create an Au-Si alloy region. Annealing enhances interdiffusion and a Si-rich region exists on the topmost surface of Au films on a-Si:H.
Resumo:
Alternating layers of Si(200 angstrom thick) and Ce(200 angstrom thick) up to 26 layers altogether were deposited by electron evaporation under ultrahigh vacuum conditions on Si(100) substrate held at 150-degrees-C. Isothermal, rapid thermal annealing has been used to react these Ce-Si multilayer films. A variety of analytical techniques has been used to study these multilayer films after annealing, and among these are Auger electron spectroscopy, Rutherford backscattering, X-ray diffraction, and high resolution transmission electron microscopy. Intermixing of these thin Ce-Si multilayer films has occurred at temperatures as low as 150-degrees-C for 2 h, when annealed. Increasing the annealing temperature from 150 to 400-degrees-C for 1 h, CeSi2 forms gradually and the completion of reaction occurs at approximately 300-400-degrees-C. During the formation of CeSi2 from 150-400-degrees-C, there is some evidence for small grains in the selected area diffraction patterns, indicating that CeSi2 crystallites were present in some regions. However, we have no conclusive evidence for the formation of epitaxial CeSi2 layers, only polycrystals were formed when reacted in the solid phase even after rapid thermal anneal at 900-degrees-C for 10 s. The formation mechanism has also been discussed in combining the results of the La-Si system.
Resumo:
The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.