996 resultados para Optimal tests
Resumo:
In practice, piles are most often modelled as "Beams on Non-Linear Winkler Foundation" (also known as “p-y spring” approach) where the soil is idealised as p-y springs. These p-y springs are obtained through semi-empirical approach using element test results of the soil. For liquefied soil, a reduction factor (often termed as p-multiplier approach) is applied on a standard p-y curve for the non-liquefied condition to obtain the p-y curve liquefied soil condition. This paper presents a methodology to obtain p-y curves for liquefied soil based on element testing of liquefied soil considering physically plausible mechanisms. Validation of the proposed p-y curves is carried out through the back analysis of physical model tests.
Resumo:
Gough, John; Belavkin, V.P.; Smolianov, O.G., (2005) 'Hamilton?Jacobi?Bellman equations for quantum optimal feedback control', Journal of Optics B: Quantum and Semiclassical Optics 7 pp.S237-S244 RAE2008
Resumo:
Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.
Resumo:
Hidden State Shape Models (HSSMs) [2], a variant of Hidden Markov Models (HMMs) [9], were proposed to detect shape classes of variable structure in cluttered images. In this paper, we formulate a probabilistic framework for HSSMs which provides two major improvements in comparison to the previous method [2]. First, while the method in [2] required the scale of the object to be passed as an input, the method proposed here estimates the scale of the object automatically. This is achieved by introducing a new term for the observation probability that is based on a object-clutter feature model. Second, a segmental HMM [6, 8] is applied to model the "duration probability" of each HMM state, which is learned from the shape statistics in a training set and helps obtain meaningful registration results. Using a segmental HMM provides a principled way to model dependencies between the scales of different parts of the object. In object localization experiments on a dataset of real hand images, the proposed method significantly outperforms the method of [2], reducing the incorrect localization rate from 40% to 15%. The improvement in accuracy becomes more significant if we consider that the method proposed here is scale-independent, whereas the method of [2] takes as input the scale of the object we want to localize.
Resumo:
It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.
Resumo:
This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.
Resumo:
Genetic Algorithms (GAs) make use of an internal representation of a given system in order to perform optimization functions. The actual structural layout of this representation, called a genome, has a crucial impact on the outcome of the optimization process. The purpose of this paper is to study the effects of different internal representations in a GA, which generates neural networks. A second GA was used to optimize the genome structure. This structure produces an optimized system within a shorter time interval.
Resumo:
The performance of an RF output matching network is dependent on integrity of the ground connection. If this connection is compromised in anyway, additional parasitic elements may occur that can degrade performance and yield unreliable results. Traditionally, designers measure Constant Wave (CW) power to determine that the RF chain is performing optimally, the device is properly matched and by implication grounded. It is shown that there are situations where modulation quality can be compromised due to poor grounding that is not apparent using CW power measurements alone. The consequence of this is reduced throughput, range and reliability. Measurements are presented on a Tyndall Mote using a CC2420 RFIC todemonstrate how poor solder contact between the ground contacts and the ground layer of the PCB can lead tothe degradation of modulated performance. Detailed evaluation that required the development of a new measurement definition for 802.15.4 and analysis is presented to show how waveform quality is affected while the modulated output power remains within acceptable limits.
Resumo:
Choosing the right or the best option is often a demanding and challenging task for the user (e.g., a customer in an online retailer) when there are many available alternatives. In fact, the user rarely knows which offering will provide the highest value. To reduce the complexity of the choice process, automated recommender systems generate personalized recommendations. These recommendations take into account the preferences collected from the user in an explicit (e.g., letting users express their opinion about items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread; research indicates that they increase the customers' satisfaction and lead to higher sales. Preference handling is one of the core issues in the design of every recommender system. This kind of system often aims at guiding users in a personalized way to interesting or useful options in a large space of possible options. Therefore, it is important for them to catch and model the user's preferences as accurately as possible. In this thesis, we develop a comparative preference-based user model to represent the user's preferences in conversational recommender systems. This type of user model allows the recommender system to capture several preference nuances from the user's feedback. We show that, when applied to conversational recommender systems, the comparative preference-based model is able to guide the user towards the best option while the system is interacting with her. We empirically test and validate the suitability and the practical computational aspects of the comparative preference-based user model and the related preference relations by comparing them to a sum of weights-based user model and the related preference relations. Product configuration, scheduling a meeting and the construction of autonomous agents are among several artificial intelligence tasks that involve a process of constrained optimization, that is, optimization of behavior or options subject to given constraints with regards to a set of preferences. When solving a constrained optimization problem, pruning techniques, such as the branch and bound technique, point at directing the search towards the best assignments, thus allowing the bounding functions to prune more branches in the search tree. Several constrained optimization problems may exhibit dominance relations. These dominance relations can be particularly useful in constrained optimization problems as they can instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can achieve dramatic reductions in the search space while looking for optimal solutions. A number of constrained optimization problems can model the user's preferences using the comparative preferences. In this thesis, we develop a set of pruning rules used in the branch and bound technique to efficiently solve this kind of optimization problem. More specifically, we show how to generate newly defined pruning rules from a dominance algorithm that refers to a set of comparative preferences. These rules include pruning approaches (and combinations of them) which can drastically prune the search space. They mainly reduce the number of (expensive) pairwise comparisons performed during the search while guiding constrained optimization algorithms to find optimal solutions. Our experimental results show that the pruning rules that we have developed and their different combinations have varying impact on the performance of the branch and bound technique.
Resumo:
There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recently as the potential for power extraction is very significant. Various wave energy converter (WEC) technologies currently exist with the oscillating water column (OWC) type converter being one of the most advanced. There are fundemental differences in the power profile of the pneumatic power supplied by the OWC WEC and that of a wind turbine and this causes significant challenges in the selection and rating of electrical generators for the OWC devises. The thesis initially aims to provide an accurate per-phase equivalent circuit model of the DFIM by investigating various characterisation testing procedures. Novel testing methodologies based on the series-coupling tests is employed and is found to provide a more accurate representation of the DFIM than the standard IEEE testing methods because the series-coupling tests provide a direct method of determining the equivalent-circuit resistances and inductances of the machine. A second novel method known as the extended short-circuit test is also presented and investigated as an alternative characterisation method. Experimental results on a 1.1 kW DFIM and a 30 kW DFIM utilising the various characterisation procedures are presented in the thesis. The various test methods are analysed and validated through comparison of model predictions and torque-versus-speed curves for each induction machine. Sensitivity analysis is also used as a means of quantifying the effect of experimental error on the results taken from each of the testing procedures and is used to determine the suitability of the test procedures for characterising each of the devices. The series-coupling differential test is demonstrated to be the optimum test. The research then focuses on the OWC WEC and the modelling of this device. A software model is implemented based on data obtained from a scaled prototype device situated at the Irish test site. Test data from the electrical system of the device is analysed and this data is used to develop a performance curve for the air turbine utilised in the WEC. This performance curve was applied in a software model to represent the turbine in the electro-mechanical system and the software results are validated by the measured electrical output data from the prototype test device. Finally, once both the DFIM and OWC WEC power take-off system have been modeled succesfully, an investigation of the application of the DFIM to the OWC WEC model is carried out to determine the electrical machine rating required for the pulsating power derived from OWC WEC device. Thermal analysis of a 30 kW induction machine is carried out using a first-order thermal model. The simulations quantify the limits of operation of the machine and enable thedevelopment of rating requirements for the electrical generation system of the OWC WEC. The thesis can be considered to have three sections. The first section of the thesis contains Chapters 2 and 3 and focuses on the accurate characterisation of the doubly-fed induction machine using various testing procedures. The second section, containing Chapter 4, concentrates on the modelling of the OWC WEC power-takeoff with particular focus on the Wells turbine. Validation of this model is carried out through comparision of simulations and experimental measurements. The third section of the thesis utilises the OWC WEC model from Chapter 4 with a 30 kW induction machine model to determine the optimum device rating for the specified machine. Simulations are carried out to perform thermal analysis of the machine to give a general insight into electrical machine rating for an OWC WEC device.
Resumo:
BACKGROUND: Serologic methods have been used widely to test for celiac disease and have gained importance in diagnostic definition and in new epidemiologic findings. However, there is no standardization, and there are no reference protocols and materials. METHODS: The European working group on Serological Screening for Celiac Disease has defined robust noncommercial test protocols for immunoglobulin (Ig)G and IgA gliadin antibodies and for IgA autoantibodies against endomysium and tissue transglutaminase. Standard curves were linear in the decisive range, and intra-assay variation coefficients were less than 5% to 10%. Calibration was performed with a group reference serum. Joint cutoff limits were used. Seven laboratories took part in the final collaborative study on 252 randomized sera classified by histology (103 pediatric and adult patients with active celiac disease, 89 disease control subjects, and 60 blood donors). RESULTS: IgA autoantibodies against endomysium and tissue transglutaminase rendered superior sensitivity (90% and 93%, respectively) and specificity (99% and 95%, respectively) over IgA and IgG gliadin antibodies. Tissue transglutaminase antibody testing showed superior receiver operating characteristic performance compared with gliadin antibodies. The K values for interlaboratory reproducibility showed superiority for IgA endomysium (0.93) in comparison with tissue transglutaminase antibodies (0.83) and gliadin antibodies (0.82 for IgG, 0.62 for IgA). CONCLUSIONS: Basic criteria of standardization and quality assessment must be fulfilled by any given test protocol proposed for serologic investigation of celiac disease. The working group has produced robust test protocols and reference materials available for standardization to further improve reliability of serologic testing for celiac disease.
Resumo:
In this work we introduce a new mathematical tool for optimization of routes, topology design, and energy efficiency in wireless sensor networks. We introduce a vector field formulation that models communication in the network, and routing is performed in the direction of this vector field at every location of the network. The magnitude of the vector field at every location represents the density of amount of data that is being transited through that location. We define the total communication cost in the network as the integral of a quadratic form of the vector field over the network area. With the above formulation, we introduce a mathematical machinery based on partial differential equations very similar to the Maxwell's equations in electrostatic theory. We show that in order to minimize the cost, the routes should be found based on the solution of these partial differential equations. In our formulation, the sensors are sources of information, and they are similar to the positive charges in electrostatics, the destinations are sinks of information and they are similar to negative charges, and the network is similar to a non-homogeneous dielectric media with variable dielectric constant (or permittivity coefficient). In one of the applications of our mathematical model based on the vector fields, we offer a scheme for energy efficient routing. Our routing scheme is based on changing the permittivity coefficient to a higher value in the places of the network where nodes have high residual energy, and setting it to a low value in the places of the network where the nodes do not have much energy left. Our simulations show that our method gives a significant increase in the network life compared to the shortest path and weighted shortest path schemes. Our initial focus is on the case where there is only one destination in the network, and later we extend our approach to the case where there are multiple destinations in the network. In the case of having multiple destinations, we need to partition the network into several areas known as regions of attraction of the destinations. Each destination is responsible for collecting all messages being generated in its region of attraction. The complexity of the optimization problem in this case is how to define regions of attraction for the destinations and how much communication load to assign to each destination to optimize the performance of the network. We use our vector field model to solve the optimization problem for this case. We define a vector field, which is conservative, and hence it can be written as the gradient of a scalar field (also known as a potential field). Then we show that in the optimal assignment of the communication load of the network to the destinations, the value of that potential field should be equal at the locations of all the destinations. Another application of our vector field model is to find the optimal locations of the destinations in the network. We show that the vector field gives the gradient of the cost function with respect to the locations of the destinations. Based on this fact, we suggest an algorithm to be applied during the design phase of a network to relocate the destinations for reducing the communication cost function. The performance of our proposed schemes is confirmed by several examples and simulation experiments. In another part of this work we focus on the notions of responsiveness and conformance of TCP traffic in communication networks. We introduce the notion of responsiveness for TCP aggregates and define it as the degree to which a TCP aggregate reduces its sending rate to the network as a response to packet drops. We define metrics that describe the responsiveness of TCP aggregates, and suggest two methods for determining the values of these quantities. The first method is based on a test in which we drop a few packets from the aggregate intentionally and measure the resulting rate decrease of that aggregate. This kind of test is not robust to multiple simultaneous tests performed at different routers. We make the test robust to multiple simultaneous tests by using ideas from the CDMA approach to multiple access channels in communication theory. Based on this approach, we introduce tests of responsiveness for aggregates, and call it CDMA based Aggregate Perturbation Method (CAPM). We use CAPM to perform congestion control. A distinguishing feature of our congestion control scheme is that it maintains a degree of fairness among different aggregates. In the next step we modify CAPM to offer methods for estimating the proportion of an aggregate of TCP traffic that does not conform to protocol specifications, and hence may belong to a DDoS attack. Our methods work by intentionally perturbing the aggregate by dropping a very small number of packets from it and observing the response of the aggregate. We offer two methods for conformance testing. In the first method, we apply the perturbation tests to SYN packets being sent at the start of the TCP 3-way handshake, and we use the fact that the rate of ACK packets being exchanged in the handshake should follow the rate of perturbations. In the second method, we apply the perturbation tests to the TCP data packets and use the fact that the rate of retransmitted data packets should follow the rate of perturbations. In both methods, we use signature based perturbations, which means packet drops are performed with a rate given by a function of time. We use analogy of our problem with multiple access communication to find signatures. Specifically, we assign orthogonal CDMA based signatures to different routers in a distributed implementation of our methods. As a result of orthogonality, the performance does not degrade because of cross interference made by simultaneously testing routers. We have shown efficacy of our methods through mathematical analysis and extensive simulation experiments.
Resumo:
BACKGROUND: Optimally, expanded HIV testing programs should reduce barriers to testing while attracting new and high-risk testers. We assessed barriers to testing and HIV risk among clients participating in mobile voluntary counseling and testing (MVCT) campaigns in four rural villages in the Kilimanjaro Region of Tanzania. METHODS: Between December 2007 and April 2008, 878 MVCT participants and 506 randomly selected community residents who did not access MVCT were surveyed. Gender-specific logistic regression models were used to describe differences in socioeconomic characteristics, HIV exposure risk, testing histories, HIV related stigma, and attitudes toward testing between MVCT participants and community residents who did not access MVCT. Gender-specific logistic regression models were used to describe differences in socioeconomic characteristics, HIV exposure risk, testing histories, HIV related stigma, and attitudes toward testing, between the two groups. RESULTS: MVCT clients reported greater HIV exposure risk (OR 1.20 [1.04 to 1.38] for males; OR 1.11 [1.03 to 1.19] for females). Female MVCT clients were more likely to report low household expenditures (OR 1.47 [1.04 to 2.05]), male clients reported higher rates of unstable income sources (OR 1.99 [1.22 to 3.24]). First-time testers were more likely than non-testers to cite distance to testing sites as a reason for not having previously tested (OR 2.17 [1.05 to 4.48] for males; OR 5.95 [2.85 to 12.45] for females). HIV-related stigma, fears of testing or test disclosure, and not being able to leave work were strongly associated with non-participation in MVCT (ORs from 0.11 to 0.84). CONCLUSIONS: MVCT attracted clients with increased exposure risk and fewer economic resources; HIV related stigma and testing-related fears remained barriers to testing. MVCT did not disproportionately attract either first-time or frequent repeat testers. Educational campaigns to reduce stigma and fears of testing could improve the effectiveness of MVCT in attracting new and high-risk populations.
Resumo:
Gemstone Team Grenergy