997 resultados para Gallium Arsenide (GaAs)
Resumo:
We have observed Wannier-Stark localization in strained In0.2Ga0.8As/GaAs superlattices by low- and room-temperature photocurrent spectra measurements. The experimental results are well in agreement with the theoretical predictions. A large field-induced modulation response of the absorption edge of the superlattices at room temperature suggests the possibilities of the application to the design of various kinds of electro-optical devices operating at a wavelength of 0.98 mum, based on Wannier-Stark localization effects.
Resumo:
We have studied the radiative excitonic lifetime as a function of the well width in GaAs/GaAlAs quantum wells. An increasing lifetime with decreasing well width has been observed in very narrow and high quality GaAs/GaAlAs quantum wells, and attributed to the reduced overlap of the electron and hole wave functions and the increase of the exciton effective volume. This is the first observation of its kind in the conventional GaAs/GaAlAs quantum wells.
OPTICAL CHARACTERISTICS OF GAAS/ALGAAS RIDGE-QUANTUM-WELL-WIRES GROWN BY MBE ON NONPLANAR SUBSTRATES
Resumo:
With conventional photolithography and wet chemical etching, we have realized GaAs/AlGaAs buried ridge-quantum-well-wires (RQWWs) with vertically stacked wires in lateral arrays promising for device application, which were grown in situ by a single-step molecular beam epitaxy growth and formed at the ridge tops of mesas on nonplanar substrates. Confocal photoluminescence (CPL) and polarization-dependent photoreflectance (PR) are applied to study optical characteristics of RQWWs. Lateral bandgap modulation due to lateral variation of QW layer thickness is demonstrated not only by CPL but also by PR. As one evidence for RQWWs, a large blue shift is observed at the energy level positions for electronic transitions corresponding to quantum wells (QWs) at the ridge tops of mesas compared with those corresponding to QWs on nonpatterned areas of the same sample. The blue shift is in contradiction with the fact that the GaAs QW layers at the tops of the mesas are thicker than those on nonpatterned areas. The other evidence for RQWWs, optical anisotropy is provided by the polarization-dependent PR, which results from lateral quantum size effect existing at the tops of the mesas.
Resumo:
We have analyzed electronic transport through a single, 200-angstrom-thick, Ga0.74Al0.36As barrier embedded in GaAs. At low temperatures and high electric field, the Fowler-Nordheim regime is observed, indicating that the barrier acts as insulating layers. At higher temperatures the thermionic regime provides an apparent barrier height, decreasing with the field, which is equal to the expected band offset when extrapolated to zero field. However, for some samples, the current is dominated by the presence of electron traps located in the barrier. A careful analysis of the temperature and field behavior of this current allows to deduce that the mechanism involved is field-enhanced emission from electron traps. The defects responsible are tentatively identified as DX centers, resulting from the contamination of the barrier by donor impurities.
Resumo:
Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.
Resumo:
It is shown that Li diffusion of GaAs can give rise to semi-insulating samples with electrical resistivity as high as 10(7) OMEGAcm in undoped, n-type, and p-type starting materials. The optical properties of the compensated samples are correlated with the depletion of free carriers caused by the Li diffusion. The radiative recombination of the Li-compensated samples is dominated by emissions with excitation-dependent peak positions that shift to lower energies with increasing compensation. The photoluminescence properties are characteristic of fluctuations of the electrostatic potential in strongly doped, compensated crystals.
Resumo:
This article presents the results of near-resonant Raman scattering measurements on GaAs/AlAs superlattices at room temperature. A strong enhancement of GaAs LO phonon-even modes resulted owing to a dipole-allowed Frohlich interaction in superlattices. Similar to the previous results, the LO phonon-even modes in a polarized configuration are observed. In contrast to previous work, however, what we observed in depolarized configurations is the LO phonon-odd modes instead of even modes. It is confirmed that the selection rules for near-resonant Raman scattering from LO phonons in this kind of superlattices are the same as those for off-resonant scattering. From the second-order Raman scattering, it is confirmed that polarized second-order Raman scattering spectra consist of overtones and combinations of two even modes, and depolarized second-order Raman scattering spectra consist of combinations of an even mode and an odd mode. Our experimental results coincide with the predictions using the recently developed Huang-Zhu model. A brief discussion on interface modes and their combination with confined modes is also presented.
Resumo:
Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.
Resumo:
Intervalley GAMMA-X deformation-potential constants (IVDP's) have been calculated by use of a first-principles pseudopotential method for the III-V zinc-blende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. When the calculated IVDP's of LA phonons for GaP, InP, and InAs and of LO phonons for AlAs, AlSb, GaAs, GaSb, and InSb are compared with results of a previous calculation that used the empirical pseudopotential method (EPM) and a rigid-ion approximation, good agreement is found. However, our ab initio pseudopotential results on IVDP's of LA phonons for AlAs, AlSb, GaAs, GaSb, and InSb and of LO phonons for GaP, InP, and InAs are about one order of magnitude smaller than those obtained by use of EPM calculations, indicating that the electron redistribution accompanying crystal-lattice deformation has a significant effect on GAMMA-X intervalley scattering for these phonon modes when the anions are being displaced. In our calculations the LA- and LO-phonon modes at the X point have been evaluated in the frozen-phonon approximation. We have also obtained the LAX- and LOX-phonon frequencies for these materials from total-energy calculations, which agree very well with experimental values for these semiconductors. We have also calculated GAMMA-X hole-phonon scattering matrix elements for the top valence bands in these nine semiconductors, from which the GAMMA-X IVDP's of the top valence bands for the longitudinal phonons and transverse phonons are evaluated, respectively.
Resumo:
Clear observations of photoreflectance (PR) spectra due to excitonic transitions in semi-insulating GaAs bulk materials are reported. The modulation mechanism is attributed to the electromodulation induced by the Dember effect. This study indicates that the PR spectroscopy provides an important method for characterizing the crystal quality of high-resistivity GaAs.
Resumo:
We have studied the Wannier-Stark effect in GaAs/GaAlAs short-period superlattices under applied electric field perpendicular to the layers by room- and low-temperature photocurrent measurements. The changes in the transition intensities with biasing are well fitted to a theoretical calculation based on the finite Kronig-Penney model on which the potential of an applied electric field is superposed. With increasing electric field, the 0h peak grows to a maximum while the -1h and +1h peaks monotonousely decrease. By a comparison of the spectra measured at different temperatures, the two peaks in the room temperature photocurrent spectra at relatively low electric field (1.0 X 10(4) V/cm) are identified to be caused by the Wannier localization effect instead of saddle-point excitons.