958 resultados para Interfacing circuits
Resumo:
A new-type silicon material, silicon on defect layer (SODL) was proved to have a very high quality surface microstructure which is necessary for commercially feasible high-density very large scale integrated circuits (VLSI). The structure of the SODL material was viewed by transmission electron microscopy. The SODL material was also proved to have a buried defect layer with an insulating resistivity of 5.7 x 10(10) OMEGA-cm.
Resumo:
We report on an aluminum oxynitride (AlON) film which was successfully made using the reactiver r.f. sputtering method in an N2-O2 mixture. The fabrication process, atomic components, breakdown field and refractive index of the AlON film are shown in detail. The AlON film is a new polyfilm combining the good properties of Al2O3 and AlN, and it is very interesting with regard to optoelectronic devices and integrated optic circuits.
Resumo:
This paper proposes a novel noise optimization technique. The technique gives analytical formulae for the noise performance of inductively degenerated CMOS low noise amplifier (LNA) circuits with an ideal gate inductor for a fixed bias voltage and nonideal gate inductor for a fixed power dissipation, respectively, by mathematical analysis and reasonable approximation methods. LNA circuits with required noise figure can be designed effectively and rapidly just by using hand calculations of the proposed formulae. We design a 1.8 GHz LNA in a TSMC 0.25 pan CMOS process. The measured results show a noise figure of 1.6 dB with a forward gain of 14.4 dB at a power consumption of 5 mW, demonstrating that the designed LNA circuits can achieve low noise figure levels at low power dissipation.
Resumo:
High performance InP/InGaAs heterojunction bipolar transistors(HBTs) have been widely used in high-speed electronic devices and optoelectronic integrated circuits. InP-based HBTs were fabricated by low pressure metal organic chemical vapor deposition(MOCVD) and wet chemical etching. The sub-collector and collector were grown at 655 ℃ and other layers at 550 ℃. To suppress the Zn out-diffusion in HBT, base layer was grown with a 16-minute growth interruption. Fabricated HBTs with emitter size of 2.5×20 μm~2 showed current gain of 70~90, breakdown voltage(BV_(CE0))>2 V, cut-off frequency(f_T) of 60 GHz and the maximum relaxation frequency(f_(MAX)) of 70 GHz.
Resumo:
By means of two dimension beam propagation method (2D-BPM) with high order Pade approximation, behaviors of SOI waveguide based bend intersections with variant bending radius are simulated and analized. The result shows that crosstalk of intersections decreases with the increase of bending radius and intersecting angle. Furthermore, loss and crosstalk characteristics of bend intersections formed by sine bend, cosine bend and arc bend are compared. Sine bend based structures are proved that it can present lowest loss and smallest crosstalk properties among the three and may find their wide application in the design of bend intersections and other more complicated photonic devices and circuits.
Resumo:
With the principles of microwave circuits and semiconductor device physics, two microwave power device test circuits combined with a test fixture are designed and simulated, whose properties are evaluated by a parameter network analyzer within the frequency range from 3 to 8GHz. The simulation and experimental results verify that the test circuit with a radial stub is better than that without. As an example, a C-band AlGaN/GaN HEMT microwave power device is tested with the designed circuit and fixture. With a 5.4GHz microwave input signal, the maximum gain is 8.75dB, and the maximum output power is 33.2dBm.
Resumo:
A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
A 2 x 2 Mach-Zehnder interferometer electrooptical switch integrated in silicon-on-insulator using multimode interference 3-dB couplers as splitter and combiner has been proposed and fabricated. Free carriers plasma dispersion effect was utilized to realize light modulation in silicon. Switching operation was achieved at an injection current of 358mA and which can be much reduced by optimizing the PIN structure and improving fabrication process. Extinction ratio of 7.7dB and crosstalk of 4.8dB has been observed.
Resumo:
A semi-insulating GaAs single crystal ingot was grown in a recoverable satellite, within a specially designed pyrolytic boron nitride crucible, in a power-travelling furnace under microgravity. The crystal was characterized systematically and was used in fabricating low noise field effect transistors and analogue switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single. crystal has surpassed the best. terrestrial counterparts. Studies on the correlation between SI-GaAs wafers and the electronic devices and integrated circuits indicate that the characteristics of a compound semiconductor single crystal depends fundamentally on its stoichiometry.
Resumo:
Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes (SBD) were fabricated. They showed good rectification characteristics from room temperature to 200degreesC. At low current density. the current conduction mechanism follows the thermionic emission theory. These diodes demonstrated a low reverse leakage current of below 1 X 10(-4)Acm(-2). Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800V. In addition. these SBDs showed superior switching characteristics.
Resumo:
The semiconductor microlasers with an equilateral triangle resonator which can be fabricated by dry etching technique from the laser wafer of the edge emitting laser, are analyzed by FDTD technique and rate equations. The results show that ETR microlaser is suitable to realize single mode operation. By connecting an output waveguide to one of the vertices of the ETR, we still can get the confined modes with high quality factors. The EM microlasers are potential light sources for photonic integrated circuits.
Resumo:
We report some investigations on vertical cavity surface emitting laser (VCSEL) arrays and VCSEL based optoelectronic smart photonic multiple chip modules (MCM), consisting of 1x16 vertical cavity surface emitting laser array and 16-channel lasers driver 0.35 Pin CMOS circuit. The hybrid integrated multiple chip modules based on VCSEL operate at more than 2GHz in -3dB frequency bandwidth.
Resumo:
Small signal equivalent circuit model of vertical cavity surface emitting lasers (VCSEL's) is given in this paper. The modulation properties of VCSEL are simulated using this model in Pspice program. The simulation results are good agree with experiment data. Experiment is performed to testify the circuit model.
Resumo:
Deep level transient spectroscopy (DLTS) technique was used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular fiction epitaxy (MBE), Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x = 0. 0.017, 0.04 and 0.046. respectively) epilayers reveal that At doping leads to the formation of two electron traps at 0.21 and 0.39 eV below the conduction hand. 1)DLTFS results suggest that in addition to the rules of Te as a component of [lie alloy as well as isoelectronic centers, Te is also involved in the formation of all electron trip, whose energy level relative to the conduction hand decreases a, Te composition increases.