998 resultados para Electron accelerator
Resumo:
This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.
Resumo:
Electron irradiation induced defects in InP material which has been formed by high temperature annealing undoped InP in different atmosphere have been studied in this paper. In addition to Fe acceptor, there is no obvious defect peak in the sample before irradiation, whereas five defect peaks with activation energies of 0.23 eV, 0.26 eV, 0.31 eV, 0.37 eV and 0.46 eV have been detected after irradiation. InP annealed in P ambient has more thermally induced defects, and the defects induced by electron irradiation have characteristics of complex defect. After irradiation, carrier concentration and mobility of the samples have suffered obvious changes. Under the same condition, electron irradiation induced defects have fast recovery behavior in the FeP2 ambient annealed InP. The nature of defects, as well as their recovery mechanism and influence on material property have been discussed from the results.
Resumo:
Photonic crystal devices with feature sizes of a few hundred nanometers are often fabricated by electron beam lithography. The proximity effect, stitching error and resist profiles have significant influence on the pattern quality, and therefore determine the optical properties of the devices. In this paper, detailed analyses and simple solutions to these problems are presented. The proximity effect is corrected by the introduction of a compensating dose. The influence of the stitching error is alleviated by replacing the original access waveguides with taper-added waveguides, and the taper parameters are also discussed to get the optimal choice. It is demonstrated experimentally that patterns exposed with different doses have almost the same edge-profiles in the resist for the same development time, and that optimized etching conditions can improve the wall angle of the holes in the substrate remarkably. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present the results of coincidence Doppler broadening (CDB) measurements and positron lifetime spectroscopy (PLS) on the semiconductor material GaSb. Gallium vacancy with positron lifetime of about 283 ps (V-Ga, (283 ps)) was identified in as-grown sample by CDB technique and PAS technique. For electron irradiated samples with dosages of 10(17) cm(-2) and 10(18) cm(-2), the PAS showed almost the same defectrelated positron lifetime of about 285 ps. CDB experiments indicated that defects in irradiated samples were related to Ga vacancies. (c) 2006 Published by Elsevier B.V.
Resumo:
The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.
Resumo:
We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.
Resumo:
This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy ( MBE) in turn on a GaAs substrate. An Al0.24Ga0.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-mu m gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.
Resumo:
The effects of dislocations and Si doping on the electrical properties of n-type GaN grown by metal organic chemical vapor deposition (MOCVD) are investigated. It is found that both electron mobility and carrier concentration are strongly influenced by edge dislocations. A moderate Si doping during the GaN growth improves the electron mobility, but the best doping effect depends on the dislocation density of the sample. High quality about 4-mu m-thick MOCVD-grown GaN film with a room temperature electron mobility as high as 1005 cm(2)/V s is obtained by optimizing growth conditions. (c) 2006 American Institute of Physics.
Resumo:
4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.
Resumo:
An internal shrinkage of nanocavity in silicon was in situ observed under irradiation of energetic electron on electron transmission microscopy. Because there is no addition of any external materials to cavity site, a predicted nanosize effect on the shrinkage was observed. At the same time, because there is no ion cascade effect as encountered in the previous ion irradiation-induced nanocavity shrinkage experiment, the electron irradiation-induced instability of nanocavity also provides a further more convincing evidence to demonstrate the predicted irradiation-induced athermal activation effect. (c) 2006 American Institute of Physics.
Resumo:
The optical manipulation of electron spins is of great benefit to solid-state quantum information processing. In this letter, we provide a comparative study on the ultrafast optical manipulation of single electron spin in the doped and undoped quantum dots. The study indicates that the experimental breakthrough can be preliminarily made in the undoped quantum dots, because of the relatively less demand.
Resumo:
Closely related to the quantum information processing in solid states, we study the quantum measurement of single electron state by a mesoscopic charge-sensitive detector, namely the quantum point contact (QPC). We find that the conventional Lindblad-type master equation is not appropriate for describing the underlying measurement dynamics. The treatment developed in this work properly accounts for the energy-exchange between the detector and the measured system, and its role on the detailed-balance relation. A valid description for the QPC measurement dynamics is provided which may have impact on the study of quantum measurement and quantum feedback control in solid states.
Resumo:
The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.
Resumo:
Electron irradiation-induced deep level defects have been studied in InP which has undergone high-temperature annealing in phosphorus and iron phosphide ambients, respectively. In contrast to a high concentration of irradiation-induced defects in as-grown and phosphorus ambient annealed InP, InP pre-annealed in iron phosphide ambient has a very low concentration of defects. The phenomenon has been explained in terms of a faster recombination of radiation-induced defects in the annealed InP. The radiation-induced defects in the annealed InP have been compared and studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.