990 resultados para Pre - fabricated wall
Resumo:
In this paper we report the applicability of the density matrix renormalization group (DMRG) approach to the cylindrical single wall carbon nanotube (SWCN) for the purpose of its correlation effect. By applying the DMRG approach to the t+U+V model, with t and V being the hopping and Coulomb energies between the nearest neighboring sites, respectively, and U the on-site Coulomb energy, we calculate the phase diagram for the SWCN with chiral numbers (n(1)=3, n(2)=2), which reflects the competition between the correlation energy U and V. Within reasonable parameter ranges, we investigate possible correlated ground states, the lowest excitations, and the corresponding correlation functions in which the connection with the excitonic insulator is particularly addressed.
Resumo:
Stoichiometric ZnSe nanowires have been synthesized through a vapor phase reaction of zinc and selenium powder on the (100) silicon substrate coated with a gold film of 2 nm in thickness. The microstructures and the chemical compositions of the as-grown nanowires have been investigated by means of electron microscopy, the energy dispersive spectroscopy, and Raman spectroscopy. The results reveal that the as-grown materials consist of ZnSe nanowires with diameters ranging from 5 to 50 nm. Photoluminescence of the sample demonstrates a strong green emission from room temperature down to 10 K. This is attributed to the recombination of electrons from conduction band to the medium deep Au acceptors. (C) 2003 American Institute of Physics.
Structure characteristics of InGaN quantum dots fabricated by passivation and low temperature method
Resumo:
Passivation and low temperature method was carried out to grow InGaN/GaN quantum dots (QDs). Atomic force microscope observations were performed to investigate the evolution of the surface morphology of the InGaN QDs superlattices with increasing the superlattices layer number. The result shows that the size of the QDs increases with increasing superlattices layer number. The QDs height and diameter increase from 18 and 50 run for the monolayer InGaN QDs to 37 and 80 urn for the four-stacked InGaN QDs layers, respectively. This result is considered to be due to the stress field from the sub-layer dots. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Polycrystalline Si nanowires (poly SiNWS) were successfully synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 440degreesC using silane as the Si source and Au as the catalyst. The diameters of Si nanowires range from 15 to 100nm. The growth process indicates that to fabricate SiNWS by PECVD, pre-annealing at high temperature is necessary. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A SiGe/Si multiple-quantum-well resonant-cavity-enhanced (RCE) photodetector for 1.3 mum operation was fabricated using bonding reflector process. A full width at half maximum (FWHM) of 6 nm and a quantum efficiency of 4.2% at 1314 nm were obtained. Compared to our previously reported SiGe RCE photodetectors fabricated on separation-by-implanted-oxygen wafer, the mirrors in the device can be more easily fabricated and the device can be further optimized. The FWHM is expected to be less than 1 nm and the detector is fit for density wavelength division multiplexing applications. (C) 2002 American Institute of Physics.
Resumo:
Carbon ions were implanted into crystal Si to a concentration of (0.6-1.5)at% at room temperature. Some samples were pre-irradiated with S-29(i)+ ions, while others were not pre-irradiated. Then the two kinds of samples were implanted with C-12(+) ions simultaneously, and Si1-xCx alloys were grown by solid phase epitaxy with high-temperature annealing. The effects of preirradiation on the formation of Si1-xCx alloys were studied. If the dose of implanted C ion was less than that for amorphizing Si crystals, the implanted C atoms would like to combine with defects produced during implantation, and then it was difficult for Si1-xCx alloys to form after annealine, at 950 degreesC. Pre-irradiation was advantageous for Si1-xCx alloy formation. With the increase of C ion dose, the damage produced by C ions increased. Pre-irradiation was unfavorable for Si1-xCx, alloy formation. If the implanted C concentration was higher than that for solid phase epitaxy solution, only part of the implanted C atoms form Si1-xCx alloys and the effects of pre-irradiation could be neglected. As the annealing temperature was increased to 1050 degreesC, Si1-xCx alloys in both pre-irradiated and unpreirradiated samples of low C concentration remained, whereas most part of Si1-xCx alloys in samples with high C concentration vanished.
Resumo:
A ZnTe layer grown on GaAs substrate by hot-wall epitaxy (HWE) was studied using transmission electron microscopy (TEM). For a (110) cross-sectional specimen, its (001) ZnTe/GaAs interface was analysed by large angle stereo-projection (LASP) and high resolution electron microscopy (HREM). In the LASP, a double diffraction occurred and moire fringes were formed, meanwhile misfit dislocations were revealled clearly by weak beam technique. In HREM, not only Lomer and 60 degrees types of misfit dislocations were observed, but also two types of stacking faults were analysed. The residual strain was estimated by both methods.
Resumo:
Extracellular neural recording requires neural probes having more recording sites as well as limited volumes. With its mechanical characteristic and abundant process method, Silicon is a kind of material fit for producing neural probe. Silicon on insulator (SOI) is adopted in this paper to fabricate neural probes. The uniformity and manufacturability are improved. The fabricating process and testing results of a series of Multi channel micro neural probes were reported. The thickness of the probe is 15 mu m-30 mu m. The typical impedance characteristics of the record sites are around 2M Omega at 1k Hz. The performance of the neural probe in-vivo was tested on anesthetic rat. The recorded neural spike was typically around 140 mu V. Spike recorded from individual site could exceed 700 mu V. The average signal noise ratio was 7 or more.
Resumo:
A novel low temperature direct wafer bonding technology employing vacuum-cavity pre-bonding is proposed and applied in bonding of InGaAs/Si couple wafers under 300 degrees C and InP/GaAs couple wafers under 350 degrees C. Aligning accuracy of 0.5 mu m is achieved. During wafer bonding process the pressure on the couple wafers is 10MPa. The interface energy is sufficiently high to allow thinning of the wafers down from 350um to about 100um. And the tensile strength test indicates the bonding energy of bonded samples is about equal to the bonded samples at 550 degrees C.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.
Resumo:
4H-SiC layers have been homoepitaxially grown at 1500 degrees C with the use of a horizontal hot-wall chemical vapor deposition (CVD) system, which was built in the author's group. The typical growth rate was 2 mu m/h at a pressure of 40 Torr. The background donor concentration has been reduced to 2.3 x 10(15) cm(-3) during a prolonged growth run. It confirmed the idea that the high background concentration of thin films was caused by the impurities inside the susceptor and thermal insulator The FWHM of x-ray co-rocking curves show 9 similar to 15 aresecs in five different areas of a 32-mu m-thick 4H-SiC epilayer The free exciton peaks dominated in the near-band-edge low-temperature photoluminescence spectrum (LTPL), indicating high crystal quality.
Resumo:
A novel technique of manufacturing Al0.3Ga0.7As pyramids by liquid phase epitaxy (LPE) for scanning probe microscopy (SPM) sensors is reported Four meticulously designed conditions-partial oxidation, deficient solute, air quenching and germanium doping result in defect-free homogeneous nucleation and subsequent pyramid formation. Micrometer-sized frustums and pyramids are detected by scanning electron microscopy (SEM). The sharp end of the microtip has a radius of curvature smaller than 50 nm. It is believed that such accomplishments would contribute not only to crystal growth theory, but also to miniature fabrication technology.
Resumo:
Electron irradiation-induced deep level defects have been studied in InP which has undergone high-temperature annealing in phosphorus and iron phosphide ambients, respectively. In contrast to a high concentration of irradiation-induced defects in as-grown and phosphorus ambient annealed InP, InP pre-annealed in iron phosphide ambient has a very low concentration of defects. The phenomenon has been explained in terms of a faster recombination of radiation-induced defects in the annealed InP. The radiation-induced defects in the annealed InP have been compared and studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Ionizing radiation response of partially-depleted MOS transistors fabricated in the, fluorinated SIMOX wafers has been investigated. The experimental data show that the, radiation-induced threshold voltage shift of PMOSFETs and NMOSFETs, as well as the radiation-induced increase of off-state leakage current of NMOSFETs can be restrained by implanting fluorine ions into the buried oxide of SIMOX wafers.
Resumo:
We present the fabrication process and experimental results of 850-nm oxide-confined vertical cavity surface emitting lasers (VCSELs) fabricated by using dielectric-free approach. The threshold current of 0.4 mA, which corresponds to the threshold current density of 0.5 kA/cm(2), differential resistance of 76 Omega, and maximum output power of more than 5 mW are achieved for the dielectric-free VCSEL with a square oxide aperture size of 9 mu m at room temperature (RT). L-I-V characteristics of the dielectric-free VCSEL are compared with those of conventional VCSEL with the similar aperture size, which indicates the way to realize low-cost, low-power consumption VCSELs with extremely simple process. Preliminary study of the temperature-dependent L-I characteristics and modulation response of the dielectric-free VCSEL are also presented.