977 resultados para optical energy gap
Resumo:
The structural and optical properties of GaAsSb/GaAs-based quantum wells (QWs) are investigated. The interface quality of GaAsSb/GaAs/GaAsP coupled double (CD) QW structures is improved due to the strain compensation of epitaxial layers. The CD QWs possess a W-shape of energy band structure, and the optical properties display the features characteristic of a type-IQW when the GaAsSb layer thickness is thin enough.
Resumo:
GaAs1-xNx alloys with small N composition (x<1%) and GaAsN/GaAs quantum wells (QWs) were studied by continuous wave photoluminescence (PL), pulse wave excitaiton PL and time-resolved PL. In the PL spectra an extra transition located at the higher energy side of the commonly reported N-related emissions was observed. By measuring the PL dependence on temperature and excitation power, the new PL peak was identified as a transition of alloy band edge-related recombination in GaAsN and delocalized transition in QWs. The PL dynamics further confirms its intrinsic nature of band edge states rather than N-related bound states.
Resumo:
Planar punch through heterojunction phototransistors with a novel emitter control electrode and ion- implanted isolation (CE-PTHPT) are investigated. The phototransistors have a working voltage of 3-10V and high sensitivity at low input power. The base of the transistor is completely depleted under operating condition. Base current is zero. The CE-PTHPT has an increased speed and a decreased noise. The novel CE-PTHPT has been fabricated in this paper. The optical gain of GaAlAs/GaAs CE-PTHPT for the incident light power 1.3 and 43nw with the wavelength of 0.8 mu m reached 1260 and 8108. The input noise current calculated is 5.46 x 10(-16) A/H-z(1/2). For polysilicon emitter CE-PTHPT, the optical gain is 3083 at the input power of 0.174 mu w. The optical gain of InGaAs/InP CE-PTHPT reaches 350 for an incident power of 0.3 mu w at the wavelength of 1.55 mu m. The CE-PTHPT detectors is promising as photo detectors for optical fiber communication system.
Photoluminescence characterization of 1.3 mu m In(Ga)As/GaAs islands grown by molecular beam epitaxy
Resumo:
1.3 mum wavelength In(Ga)As/GaAs nanometer scale islands grown by molecular beam epitaxy (MBE) were characterized by photoluminescence (PL) and atomic force microscopy (AFM) measurements. It is shown that inhomogeneous broadening of optical emission due to fluctuation of the In0.5Ga0.5As islands both in size and in compositions can be effectively suppressed by introducing a AlAs layer and a strain reduction In0.2Ga0.8As layer overgrown on top of the islands, 1.3mum emission wavelength with narrower line-width less than 20meV at room temperature was obtained.
Resumo:
GaP/Si is a promoting heterostructure for Si-based optoelectronic devices since lattice constants of GaP and Si are so closed that they can match with each other. GaP was successfully grow on (100) Si subtracts by Gas-Source Molecular Bean Epitaxy (GS-MBE) in the study. The GaP/Si heterostructure was characterized by X-ray double crystal diffraction, Anger electron spectrograph, X-ray photonic spectrograph and photoluminescence (PL) measurements. The results showed that the epitaxial GaP layers are single crystalline, in which a parallel to and a (perpendicular to)are 0.54322 and 0.54625 nm, respectively. The peaks in PL spectra of GaP epitaxial layer grown on Si are 650, 627 and 640 nm, respectively. The study demonstrated that GaP/Si is a kind of lattice matched heterostructures and will be a promoting materials for future integrated photonics.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have investigated transitions above and below band edge of GaNAs/GaAs and InGaNAs/GaAs single quantum wells (QWs) by photoluminescence (PL) as well as by absorption spectra via photovoltaic effects. The interband PL peak is observed to be dominant under high excitation intensity and at low temperature. The broad luminescence band below band edge due to the nitrogen-related potential fluctuations can be effectively suppressed by increasing indium incorporation into InGaNAs. In contrast to InGaNAs/GaAs QWs, the measured interband transition energy of GaNAs/GaAs QWs can be well fitted to the theoretical calculations if a type-II band lineup is assumed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Intersubband absorption energy shifts in 3-level system stemming from depolarization and excitonlike effects are investigated. Analytically, the expressions we derive present good explanations to the conventional 2-level results and bare potential transition energy results; and numerical results show that they are more exact than the previous studies to describe the 3-level system depolarization and excitonlike shift (DES) character especially for higher carrier density (more than 8 x 10(11) cm(-2)). One interesting detail we find is that the "large blue" DES becomes "slight redshift" in the low doping limit (less than 1.9 x 10(11) cm(-2)), which may be neglected by the previous studies of intersubband transitions. Temperature character of DES in the step well structure is also numerically studied. Finally the above are applied to calculate asymmetric step quantum well structures. The two main functional aspects of terahertz (THz) emitters are discussed and several basic optimizing conditions are considered. By adjusting the well geometry parameters and material composition systematically, some optimized structures which satisfy all of the six conditions are recommended in tables. These optimizations may provide useful references to the design of 3-level-based optically pumping THz emitters.
Resumo:
Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.
Combustion synthesis and luminescent properties of the Eu3+-doped yttrium oxysulfide nanocrystalline
Resumo:
Nanocrystallinc Y2O2S:Eu3+ was successfully prepared with a combustion synthesis method, the corresponding bulk Y2O2S:Eu3+ was synthesized by conventional sulfur flux method. The results of XRD indicated that both bulk and nanocrystalline Y2O2S:Eu3+ have Pure hexagonal phases. The crystallite size was calculated to be about 20 nm according to Scherrer formula, which was consistent with the size as indicated by transmission electron microscopy (TEM).
Resumo:
The photophysical properties of the complex Sm(PM)(3)(TP)(2) [PM = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone, TP = triphenyl phosphine oxide] are determined in crystal state, and energy transfer process is modeled for ligands to center Sm(III) ion. The characteristic luminescence of Sm(III) is sensitized by PM and TP, and most of transitions from excited state (4)G(5/2) of Sm3+ are detected.