15 resultados para optical energy gap

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the tunneling characteristics of a tin-tin oxide-lead junction, a direct measurement has been made of the energy-gap variation for a superconductor carrying a current in a compensated geometry. Throughout the region investigated – several temperatures near Tc and down to a reduced temperature t = 0.8 –the observed current dependence agrees quite well with predictions based on the Ginzburg-Landau-Gor’kov theory. Near Tc the predicted temperature dependence is also well verified, though deviations are observed at lower temperatures; even for the latter, the data are internally consistent with the temperature dependence of the experimental critical current. At the lowest temperature investigated, t = 0.8, a small “Josephson” tunneling current allowed further a direct measurement of the electron drift velocity at low current densities. From this, a preliminary experimental value of the critical velocity, believed to be the first reported, can be inferred in the basis of Ginzburg-Landau theory. For tin at t = 0.8, we find vc = 87 m/sec. This value does not appear fully consistent with those predicted by recent theories for superconductors with short electronic mean-free-paths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermoelectric materials have demanded a significant amount of attention for their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics research has led to significant enhancements in the thermoelectric figure of merit, zT, even for materials that were already well studied. This thesis approaches thermoelectric zT optimization by developing a detailed understanding of the electronic structure using a combination of electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band structures. This is accomplished by applying these techniques to three important classes of thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where X=Zr, Ti, Hf), and CoSb3 skutterudites.

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and PbS, respectively. This finding can help guide electronic properties modelling by providing a concrete value for the band gap and valence band offset as a function of temperature.

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its optical and electronic properties; transport properties indicate a largely different band gap depending on whether the material is doped n-type or p-type. By measuring and reporting the optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in ZrNiSn).

I also show that CoSb3 contains multiple conduction bands that contribute to the thermoelectric properties. These bands are also observed to shift towards each other with temperature, eventually reaching effective convergence for T>500 K. This implies that the electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its high thermoelectric figure of merit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The need for sustainable energy production motivates the study of photovoltaic materials, which convert energy from sunlight directly into electricity. This work has focused on the development of Cu2O as an earth-abundant solar absorber due to the abundance of its constituent elements in the earth's crust, its suitable band gap, and its potential for low cost processing. Crystalline wafers of Cu2O with minority carrier diffusion lengths on the order of microns can be manufactured in a uniquely simple fashion — directly from copper foils by thermal oxidation. Furthermore, Cu2O has an optical band gap of 1.9 eV, which gives it a detailed balance energy conversion efficiency of 24.7% and the possibility for an independently connected Si/Cu2O dual junction with a detailed balance efficiency of 44.3%.

However, the highest energy conversion efficiency achieved in a photovoltaic device with a Cu2O absorber layer is currently only 5.38% despite the favorable optical and electronic properties listed above. There are several challenges to making a Cu2O photovoltaic device, including an inability to dope the material, its relatively low chemical stability compared to other oxides, and a lack of suitable heterojunction partners due to an unusually small electron affinity. We have addressed the low chemical stability, namely the fact that Cu2O is an especially reactive oxide due to its low enthalpy of formation (ΔHf0 = -168.7 kJ/mol), by developing a novel surface preparation technique. We have addressed the lack of suitable heterojunction partners by investigating the heterojunction band alignment of several Zn-VI materials with Cu2O. Finally, We have addressed the typically high series resistance of Cu2O wafers by developing methods to make very thin, bulk Cu2O, including devices on Cu2O wafers as thin as 20 microns. Using these methods we have been able to achieve photovoltages over 1 V, and have demonstrated the potential of a new heterojunction material, Zn(O,S).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part I

Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.

Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.

The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.

Part II

Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis details the investigations of the unconventional low-energy quasiparticle excitations in electron-type cuprate superconductors and electron-type ferrous superconductors as well as the electronic properties of Dirac fermions in graphene and three-dimensional strong topological insulators through experimental studies using spatially resolved scanning tunneling spectroscopy (STS) experiments.

Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type cuprate La0.1Sr0.9CuO2 (La-112) TC = 43 K, are investigated experimentally. For temperature (T) less than the superconducting transition temperature (TC), and in zero field, the quasiparticle spectra of La-112 exhibits gapped behavior with two coherence peaks and no satellite features. For magnetic field measurements at T < TC, first ever observation of vortices in La-112 are reported. Moreover, pseudogap-like spectra are revealed inside the core of vortices, where superconductivity is suppressed. The intra-vortex pseudogap-like spectra are characterized by an energy gap of VPG = 8.5 ± 0.6 meV, while the inter-vortex quasiparticle spectra shows larger peak-to-peak gap values characterized by Δpk-pk(H) >VPG, and Δpk-pk (0)=12.2 ± 0.8 meV > Δpk-pk (H > 0). The quasiparticle spectra are found to be gapped at all locations up to the highest magnetic field examined (H = 6T) and reveal an apparent low-energy cutoff at the VPG energy scale.

Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type "122" iron-based Ba(Fe1-xCox)2As2 are investigated for multiple doping levels (x = 0.06, 0.08, 0.12 with TC= 14 K, 24 K, and 20 K). For all doping levels and the T < TC, two-gap superconductivity is observed. Both superconducting gaps decrease monotonically in size with increasing temperature and disappear for temperatures above the superconducting transition temperature, TC. Magnetic resonant modes that follow the temperature dependence of the superconducting gaps have been identified in the tunneling quasiparticle spectra. Together with quasiparticle interference (QPI) analysis and magnetic field studies, this provides strong evidence for two-gap sign-changing s-wave superconductivity.

Additionally spatial scanning tunneling spectroscopic studies are performed on mechanically exfoliated graphene and chemical vapor deposition grown graphene. In all cases lattice strain exerts a strong influence on the electronic properties of the sample. In particular topological defects give rise to pseudomagnetic fields (B ~ 50 Tesla) and charging effects resulting in quantized conductance peaks associated with the integer and fractional Quantum Hall States.

Finally, spectroscopic studies on the 3D-STI, Bi2Se3 found evidence of impurity resonance in the surface state. The impurities are in the unitary limit and the spectral resonances are localized spatially to within ~ 0.2 nm of the impurity. The spectral weight of the impurity resonance diverges as the Fermi energy approaches the Dirac point and the rapid recovery of the surface state suggests robust topological protection against perturbations that preserve time reversal symmetry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.

As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.

The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.

Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The material presented in this thesis concerns the growth and characterization of III-V semiconductor heterostructures. Studies of the interactions between bound states in coupled quantum wells and between well and barrier bound states in AlAs/GaAs heterostructures are presented. We also demonstrate the broad array of novel tunnel structures realizable in the InAs/GaSb/AlSb material system. Because of the unique broken-gap band alignment of InAs/GaSb these structures involve transport between the conduction- and valence-bands of adjacent layers. These devices possess a wide range of electrical properties and are fundamentally different from conventional AlAs/GaAs tunnel devices. We report on the fabrication of a novel tunnel transistor with the largest reported room temperature current gains. We also present time-resolved studies of the growth fronts of InAs/GainSb strained layer superlattices and investigations of surface anion exchange reactions.

Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. The results of two studies are presented: (i) A test of coherent vs. sequential tunneling in triple barrier heterostructures, (ii) An optical measurement of the effect of barrier X-point states on Γ-point well states. In the first it was found if two quantum wells are separated by a sufficiently thin barrier, then the eigenstates of the system extend coherently across both wells and the central barriers. For thicker barriers between the wells, the electrons become localized in the individual wells and transport is best described by the electrons hopping between the wells. In the second, it was found that Γ-point well states and X-point barrier states interact strongly. The barrier X-point states modify the energies of the well states and increase the escape rate for carriers in the quantum well.

The results of several experimental studies of a novel class of tunnel devices realized in the InAs/GaSb/AlSb material system are presented in Chapter 3. These interband tunnel structures involve transport between conduction- and valence-band states in adjacent material layers. These devices are compared and contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 and experimental results are presented for both resonant and nonresonant devices. These results are compared with theoretical simulations and necessary extensions to the theoretical models are discussed.

In chapter 4 experimental results from a novel tunnel transistor are reported. The measured current gains in this transistor exceed 100 at room temperature. This is the highest reported gain at room temperature for any tunnel transistor. The device is analyzed and the current conduction and gain mechanisms are discussed.

Chapters 5 and 6 are studies of the growth of structures involving layers with different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for far infrared detectors and time resolved, in-situ studies of their growth fronts. It was found that the bandgap of superlattices with identical layer thicknesses and compositions varied by as much as 40 meV depending on how their internal interfaces are formed. The absorption lengths in superlattices with identical bandgaps but whose interfaces were formed in different ways varied by as much as a factor of two. First the superlattice is discussed including an explanation of the device and the complications involved in its growth. The experimental technique of reflection high energy electron diffraction (RHEED) is reviewed, and the results of RHEED studies of the growth of these complicated structures are presented. The development of a time resolved, in-situ characterization of the internal interfaces of these superlattices is described. Chapter 6 describes the result of a detailed study of some of the phenomena described in chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on the growth fronts of these superlattices are reported. Concurrent RHEED studies of the same physical systems studied with XPS are presented. Using the RHEED and XPS results, a real-time, indirect measurement of surface exchange reactions was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field of cavity-optomechanics explores the interaction of light with sound in an ever increasing array of devices. This interaction allows the mechanical system to be both sensed and controlled by the optical system, opening up a wide variety of experiments including the cooling of the mechanical resonator to its quantum mechanical ground state and the squeezing of the optical field upon interaction with the mechanical resonator, to name two.

In this work we explore two very different systems with different types of optomechanical coupling. The first system consists of two microdisk optical resonators stacked on top of each other and separated by a very small slot. The interaction of the disks causes their optical resonance frequencies to be extremely sensitive to the gap between the disks. By careful control of the gap between the disks, the optomechanical coupling can be made to be quadratic to first order which is uncommon in optomechanical systems. With this quadratic coupling the light field is now sensitive to the energy of the mechanical resonator and can directly control the potential energy trapping the mechanical motion. This ability to directly control the spring constant without modifying the energy of the mechanical system, unlike in linear optomechanical coupling, is explored.

Next, the bulk of this thesis deals with a high mechanical frequency optomechanical crystal which is used to coherently convert photons between different frequencies. This is accomplished via the engineered linear optomechanical coupling in these devices. Both classical and quantum systems utilize the interaction of light and matter across a wide range of energies. These systems are often not naturally compatible with one another and require a means of converting photons of dissimilar wavelengths to combine and exploit their different strengths. Here we theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed and, in terms of an equivalent photon number signal level, are found to correspond to an internal noise level of only 6 and 4 times 10x^-3 quanta, respectively.

We begin by developing the requisite theoretical background to describe the system. A significant amount of time is then spent describing the fabrication of these silicon nanobeams, with an emphasis on understanding the specifics and motivation. The experimental demonstration of wavelength conversion is then described and analyzed. It is determined that the method of getting photons into the cavity and collected from the cavity is a fundamental limiting factor in the overall efficiency. Finally, a new coupling scheme is designed, fabricated, and tested that provides a means of coupling greater than 90% of photons into and out of the cavity, addressing one of the largest obstacles with the initial wavelength conversion experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject.

Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods.

We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures.

To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties.

These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solar resource is the most abundant renewable resource on earth, yet it is currently exploited with relatively low efficiencies. To make solar energy more affordable, we can either reduce the cost of the cell or increase the efficiency with a similar cost cell. In this thesis, we consider several different optical approaches to achieve these goals. First, we consider a ray optical model for light trapping in silicon microwires. With this approach, much less material can be used, allowing for a cost savings. We next focus on reducing the escape of radiatively emitted and scattered light from the solar cell. With this angle restriction approach, light can only enter and escape the cell near normal incidence, allowing for thinner cells and higher efficiencies. In Auger-limited GaAs, we find that efficiencies greater than 38% may be achievable, a significant improvement over the current world record. To experimentally validate these results, we use a Bragg stack to restrict the angles of emitted light. Our measurements show an increase in voltage and a decrease in dark current, as less radiatively emitted light escapes. While the results in GaAs are interesting as a proof of concept, GaAs solar cells are not currently made on the production scale for terrestrial photovoltaic applications. We therefore explore the application of angle restriction to silicon solar cells. While our calculations show that Auger-limited cells give efficiency increases of up to 3% absolute, we also find that current amorphous silicion-crystalline silicon heterojunction with intrinsic thin layer (HIT) cells give significant efficiency gains with angle restriction of up to 1% absolute. Thus, angle restriction has the potential for unprecedented one sun efficiencies in GaAs, but also may be applicable to current silicon solar cell technology. Finally, we consider spectrum splitting, where optics direct light in different wavelength bands to solar cells with band gaps tuned to those wavelengths. This approach has the potential for very high efficiencies, and excellent annual power production. Using a light-trapping filtered concentrator approach, we design filter elements and find an optimal design. Thus, this thesis explores silicon microwires, angle restriction, and spectral splitting as different optical approaches for improving the cost and efficiency of solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches.

This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems.

Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented.

Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit.

Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I of this thesis deals with 3 topics concerning the luminescence from bound multi-exciton complexes in Si. Part II presents a model for the decay of electron-hole droplets in pure and doped Ge.

Part I.

We present high resolution photoluminescence data for Si doped With Al, Ga, and In. We observe emission lines due to recombination of electron-hole pairs in bound excitons and satellite lines which have been interpreted in terms of complexes of several excitons bound to an impurity. The bound exciton luminescence in Si:Ga and Si:Al consists of three emission lines due to transitions from the ground state and two low lying excited states. In Si:Ga, we observe a second triplet of emission lines which precisely mirror the triplet due to the bound exciton. This second triplet is interpreted as due to decay of a two exciton complex into the bound exciton. The observation of the second complete triplet in Si:Ga conclusively demonstrates that more than one exciton will bind to an impurity. Similar results are found for Si:Al. The energy of the lines show that the second exciton is less tightly bound than the first in Si:Ga. Other lines are observed at lower energies. The assumption of ground state to ground-state transitions for the lower energy lines is shown to produce a complicated dependence of binding energy of the last exciton on the number of excitons in a complex. No line attributable to the decay of a two exciton complex is observed in Si:In.

We present measurements of the bound exciton lifetimes for the four common acceptors in Si and for the first two bound multi-exciton complexes in Si:Ga and Si:Al. These results are shown to be in agreement with a calculation by Osbourn and Smith of Auger transition rates for acceptor bound excitons in Si. Kinetics determine the relative populations of complexes of various sizes and work functions, at temperatures which do not allow them to thermalize with respect to one another. It is shown that kinetic limitations may make it impossible to form two-exciton complexes in Si:In from a gas of free excitons.

We present direct thermodynamic measurements of the work functions of bound multi-exciton complexes in Al, B, P and Li doped Si. We find that in general the work functions are smaller than previously believed. These data remove one obstacle to the bound multi-exciton complex picture which has been the need to explain the very large apparent work functions for the larger complexes obtained by assuming that some of the observed lines are ground-state to ground-state transitions. None of the measured work functions exceed that of the electron-hole liquid.

Part II.

A new model for the decay of electron-hole-droplets in Ge is presented. The model is based on the existence of a cloud of droplets within the crystal and incorporates exciton flow among the drops in the cloud and the diffusion of excitons away from the cloud. It is able to fit the experimental luminescence decays for pure Ge at different temperatures and pump powers while retaining physically reasonable parameters for the drops. It predicts the shrinkage of the cloud at higher temperatures which has been verified by spatially and temporally resolved infrared absorption experiments. The model also accounts for the nearly exponential decay of electron-hole-droplets in lightly doped Ge at higher temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an "experimentally reasonable" repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4π Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a Si3N4 membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5$ fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.

Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.

Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.

Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.

Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.