999 resultados para Si-GaAs
REGROWTH OF MBE-GAAS FILMS ON SI SUBSTRATES BY HIGH-ENERGY ION-IMPLANTATION AND SUBSEQUENT ANNEALING
Resumo:
The crystallographic tilt of the epilayers with respect to their substrates has been observed in many heteroepitaxial systems. Many models have been proposed to explain this phenomenon, but none of them is suitable for the large mismatched system, such as GaAs/Si. Here a new model is proposed for GaAs/Si epilayers, which can also be used in other large mismatched systems. The magnitude of the tilt calculated from this model coincide well with the experimental results. Especially, this model can correctly predict the tilt direction of the GaAs/Si epilayers.
Assessment of the structural properties of GaAs/Si epilayers using X-ray (004) and (220) reflections
Resumo:
We improved the method previously used to determine the lattice constants and misorientation of GaAs/Si by recording the patterns of X-ray (004) and (220) reflections. The (220) reflection was measured from the (110) cross section of a GaAs/Si epilayer. The structural properties of the GaAs/Si epilayers grown by metal-organic chemical-vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were investigated. The rotation angle of GaAs/Si epilayers grown by MOCVD using an a-Si buffer layer is very small and the lattice constants of these GaAs/Si epilayers agree quite well with elastic theory.
Resumo:
GaAs epilayers grown on Si by metalorganic chemical vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were characterized by deep-level transient spectroscopy (DLTS). Six electron traps with activation energies of 0.79, 0.67, 0.61, 0.55, 0.53 and 0.32 eV below the conduction band were determined by fitting the experimental spectra. Two of the levels, C (0.61 eV) and F (0.32 eV), were first detected in GaAs epilayers on Si and identified as the metastable defects M3 and M4, respectively. In order to improve the quality of GaAs/Si epilayers, another GaAs layer was grown on the GaAs/Si epilayers grown using MOCVD. The deep levels in this regrown GaAs epilayer were also studied using DLTS. Only the EL2 level was found in the regrown GaAs epilayers. These results show that the quality of the GaAs epilayer was greatly improved by applying this growth process.
Resumo:
We report a novel technique for growing high-quality GaAs on Si substrate. The process involves deposition of a thin amorphous Si film prior to the conventional two-step growth. The GaAs layers grown on Si by this technique using metalorganic chemical vapor deposition exhibit a better surface morphology and higher crystallinity as compared to the samples gown by conventional two-step method. The full width at half maximum (FWHM) of the x-ray (004) rocking curve for 2.2 mu m thick GaAs/Si epilayer grown by using this new method is 160arcsec. The FWHM of the photoluminescence spectrum main peak for this sample is 2.1 meV. These are among the best results reported so far. In addition, the mechanism of this new growth method was studied using high-resolution transmission electron microscopy.
Resumo:
Recently, we reported successful growth of high-quality GaAs/Si epilayers by using a very thin amorphous Si film as buffer layer. In this paper, the impurity properties of this kind of GaAs/Si epilayers have been studied by using PL spectrum, SIMS and Hall measurement. Compared to a typical PL spectrum of the GaAs/Si epilayers grown by conventional two-step method, a new peak was observed in our PL spectrum at the energy of 1.462 eV, which is assigned to the band-to-silicon acceptor recombination. The SIMS analysis indicates that the silicon concentration in this kind of GaAs/Si epilayers is about 10(18) cm(-3). But its carrier concentration (about 4 x 10(17) cm(-3)) is lower than the silicon concentration. The lower carrier concentration in this kind of GaAs/Si epilayer can be interpreted both as the result of higher compensation and as the result of the formation of the donor-defect complex. We also found that the high-quality and low-Si-concentration GaAs/Si epilayers can be regrown by using this kind of GaAs/Si epilayer as substrate. The FWHM of the X-ray (004) rocking curve from this regrowth GaAs epilayer is 118 '', it is much less than that of the first growth GaAs epilayer (160 '') and other reports for the GaAs/Si epilayer grown by using conventional two-step method (similar to 200 '').
Resumo:
用光致发光谱(PL)、傅里叶变换红外吸收谱(FTIR)和X射线衍射谱(XRD)等研究了稀土(Er)和氧(O)双离子注入GaAs和Si的发光特性和高效发光机理。测量并分析了该材料的FTIR和XRD谱;对该材料的高效发光机制作了较深入地探讨和澄清。
Resumo:
对空间生长GaAs:Si单晶,沿着生长方向用X射线形貌和双晶衍射方法进行了研究,X射线形貌观测到了在空间生长区域有一个扇形高完整区。双晶衍射表明,在这个扇形区回摆曲线最窄、强度较高。
Resumo:
分别在InP、GaAs和Si中以7×10<′14>和1×10<′15>cm<′-2>的剂量进行Er离子注入, 并采用闭管、快速和炉退火等热处理。低温光致发光(PL)、反射式高等电子衍射和卢瑟福背散射实验研究表明, 上述样品中Er<′3+>离子特征发光的中心波长均出现在1.5μm处, 其中InP的发光峰最强, 而注入损伤的恢复是影响Er<′3+>发光的重要因素之一。卢瑟福背散射分析进一步证实退火后Er原子在Si中向表面迁移, 而在InP中的外扩散较小, 并比较了Er在InP和Si晶格中的占位情况。图7参12
Resumo:
于2010-11-23批量导入