985 resultados para quantum well electrodes
Resumo:
Using a home-made gas-source molecular beam epitaxy system, high quality InGaAs quantum wells with different well widths lattice-matched to a (001) InP substrate have been obtained. Sharp and intense peaks for each well can be well resolved in the PL spectra for the sample. For well widths larger than similar to 60 Angstrom, the exciton energies are in good agreement with those of calculation. For wells narrower than 40 Angstrom, our line widths are below the theoretical values of line width broadening due to one monolayer interface fluctuation, showing that the interface fluctuation of our sample is within one monolayer.
Resumo:
A transfer matrix approach is presented for the study of electron conduction in an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions for wave functions, the transfer matrix at an interface with a discontinuous potential boundary is obtained for the first time. The total transfer matrix is calculated by multiplication of the transfer matrix for each segment of the structure as well as numerical integration of coupled second-order differential equations. The proposed method is applied to the evaluation of the conductance and the electron probability density in several typical cavity structures. The effect of the geometrical features on the electron transmission is discussed in detail. In the numerical calculations, the method is found to be more efficient than most of the other methods in the literature and the results are found to be in excellent agreement with those obtained by the recursive Green's function method.
Resumo:
A transfer matrix method is presented for the study of electron conduction in a quantum waveguide with soft wall lateral confinement. By transforming the two-dimensional Schrodinger equation into a set of second order ordinary differential equations, the total transfer matrix is obtained and the scattering probability amplitudes are calculated. The proposed method is applied to the evaluation of the electron transmission in two types of cavity structure with finite-height square-well confinement. The results obtained by our method, which are found to be in excellent agreement with those from another transfer matrix method, suggest that the infinite square-well potential is a good approximation to finite-height square-well confinement for electrons propagating in the ground transverse mode, but softening of the walls has an obvious effect on the electron transmission and mode-mixing for propagating in the excited transverse mode. (C) 1996 American Institute of Physics.
Resumo:
Photoluminescence and time-resolved photoluminescence were used to study the heterointerface configuration in GaAs/AlGaAs quantum wells grown by molecular-beam epitaxy with growth interruption. Photoluminescence spectra of the growth-interrupted sample are characterized by multiplet structures, with energy separation corresponding to a 0.8 monolayer difference in well width, rather than 1 monolayer as expected from the ''atomically smooth island'' picture. By analyzing the thermal transfer process of the photogenerated carriers and luminescence decay process, we further exploit the exciton localization at the interface microroughness superimposed on the extended growth islands. The lateral size of the microroughness in our sample was estimated to be 5 nm, less than the exciton diameter of 15 nm. Our results strongly support the bimodal roughness model proposed by Warwick et al. [Appl. Phys. Lett. 56, 2666 (1990)]. (C) 1996 American Institute of Physics.
Resumo:
The rising time of the excitonic luminescence in GaAs/AlGaAs quantum wells is studied as a function of the well width. For well thickness below approximately 20 Angstrom, we find an increase of rising time with decreasing well width. We explain the dependence of the rising time on well width in very thin quantum wells by the slow-down energy relaxation and/or exciton migration processes due to the decrease of the scattering rate of the exciton-acoustic-phonon interaction. (C) 1996 American Institute of Physics.
RESEARCH ON ELECTRICAL-PROPERTIES OF AMPHIPHILIC LIPID-MEMBRANES BY MEANS OF INTERDIGITAL ELECTRODES
Resumo:
Lipids are the main component of all cell membranes and also important mimetic materials. Moreover, it was found recently that they can be used as sensitive membranes for olfactory and taste sensors. Hence the understanding of lipid resistance is important both in sensors and in life sciences. Thirteen lipids were examined by means of interdigital electrodes with narrow gaps of 20-50 mu m, made by IC technology. The membrane lateral resistance in air, resisting electrical voltage, the influence of impurities on resistance and the resistance change in acetic acid vapour are presented for the first time. It is shown that the electrical resistivity for self-assembling lipids depends on their duration of being in an electric field and the content of the conductive impurities. The interdigital electrode is a transducer as well as a powerful tool for researching biomaterials and mimicking materials. The conducting mechanism of lipids is discussed. This method is also suitable for some polymer membranes.
PRESSURE-DEPENDENCE OF PHOTOLUMINESCENCE FROM ZNSE-TE-(CDSE)(1) (ZNSE)(3) SUPERLATTICE QUANTUM-WELLS
Resumo:
Pressure dependence of photoluminescence from ZnSe:Te-(CdSe)(1)(ZnSe)(3) short period superlattice quantum wells is reported. In addition to the exciton band from the superlattice layers, strong bands for localized excitons self-trapped al single Te (Te-1) atom, double Te atoms (Te-2) and Te clusters (Te-n, n greater than or equal to 3) as well as for the free excitons in isoelectronic Te incorporated ZnSe layers are observed. Significant differences in the pressure and temperature dependencies of the observed exciton transitions are presented and discussed.
Resumo:
Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells and GaInNAs epilayers grown on GaAs substrate show an apparent "S-shape" temperature-dependence of the of dominant luminescence peak. At low temperature and weak excitation conditions, a PL peak related to nitrogen cluster-induced bound states can be well resolved in the PL spectra. It displays a remarkable red shift of up to 60 meV and is thermally quenched below 100 K with increasing temperature, being attributed to N-cluster induced bound states. The indium incorporation exhibits significant effect on the cluster formation. The rapid thermal annealing treatment at 750 C can essentially remove the bound states-induced peak.
Resumo:
Two kinds of quantum computation systems using artificial molecules: quantum computer and quantum analog computer are described. The artificial molecule consists of two or three coupled quantum dots stacked along z direction and one single electron, In quantum computer, one-qubit and two-qubit gates are constructed by one molecule and two molecules, respectively. The coupling between two qubits in a quantum gate can be controlled by thin film electrodes. We also constructed a quantum analog computer by designing a three-dot molecule network and mapping a graph 3-colorability problem onto the network. The ground-state configuration of the single electrons in the network corresponds to one of the problem solutions, We numerically study the operations of the two kinds of the quantum computers and demonstrate that they quantum gates can perform the quantum computation and solve complex problems.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence (PL) of strained SiGe/Si multiple quantum wells (MQW) with flat and undulated SiGe well layers was studied at different temperature. With elevated temperature from 10K, the no-phonon (NP) peak of the SiGe layers in the flat sample has firstly a blue shift due to the dominant transition converting from bound excitons (BE) to free excitons (FE), and then has a red shift when the temperature is higher than 30K because of the narrowing of the band gap. In the undulated sample, however, monotonous blue shift was observed as the temperature was elevated from 10 K to 287 K. The thermally activated electrons, confined in Si due to type-II band alignment, leak into the SiGe crest regions, and the leakage is enhanced with the elevated temperature. It results in a blue shift of the SiGe luminescence spectra.
Resumo:
Diagonal self-assembled InAs quantum wire (QWR) arrays with the stacked InAs/In0.52Al0.48As structure are grown on InP substrates, which are (001)-oriented and misoriented by 6degrees towards the [100] direction. Both the molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE) techniques are employed. Transmission electron microscopy reveals that whether a diagonal InAs QWR array of the stacked InAs/InAlAs is symmetrical about the growth direction or not depends on the growth method as well as substrate orientation. Asymmetry in the diagonal MEE-grown InAs QWR array can be ascribed to the influence of surface reconstruction on upward migration of adatoms during the self-assembly of the InAs quantum wires.
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.
Resumo:
In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.