998 resultados para Stray light crosstalk
Resumo:
This paper reports on the design, fabrication, and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application. This paper mainly aims at two aspects. One is to improve the optical coupling between the laser and modulator; another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator. The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA. Output power at 100mA is more than 10mW. The extinction characteristics,modulation bandwidth, and electrical return loss are measured. 3dB bandwidth more than 10GHz is monitored.
Resumo:
The n-type GaAs substrates are used and their conductive type is changed to p-type by tunnel junction for AlGaInP light emitting diodes (TJ-LED), then n-type GaP layer is used as current spreading layer. Because resistivity of the n-type GaP is lower than that of p-type, the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n-type GaP current spreading layer. For TJ-LED with 3μm n-type GaP current spreading layer, experimental results show that compared with conventional LED with p-type GaP current spreading layer, light output power is increased for 50% at 20mA and for 66.7% at 100mA.
Resumo:
国家自然科学基金
Resumo:
A 2 x 2 Mach-Zehnder interferometer electrooptical switch integrated in silicon-on-insulator using multimode interference 3-dB couplers as splitter and combiner has been proposed and fabricated. Free carriers plasma dispersion effect was utilized to realize light modulation in silicon. Switching operation was achieved at an injection current of 358mA and which can be much reduced by optimizing the PIN structure and improving fabrication process. Extinction ratio of 7.7dB and crosstalk of 4.8dB has been observed.
Resumo:
In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.
Resumo:
The semiconductor microlasers based on the equilateral triangle resonator (ETR) can be fabricated from the edge-emitting laser wafer by dry-etching technique, and the directional emission can be obtained by connecting an output waveguide to one of the vertices of the ETR. We investigate the mode characteristics, especially the mode quality factor, for the ETR with imperfect vertices, which is inevitable in the real technique process. The numerical simulations show that the confined modes can still have a high quality factor in the ETR with imperfect vertices. We can expect that the microlasers is a suitable light source for photonic integrated circuits.
Resumo:
Electroabsorption (EA) modulator integrated with partially gain coupling distributed feedback (DFB) lasers have been fabricated and shown high single mode yield and wavelength stability. The small signal bandwidth is about 7.5 GHz. Strained Si1-chiGechi/Si multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetectors with SiO2/Si distributed Bragg reflector (DBR) as the mirrors have been fabricated and shown a clear narrow bandwidth response. The external quantum efficiency at 1.3 mum is measured to be about 3.5% under reverse bias of 16 V. A novel GaInNAs/GaAs MQW RCE p-i-n photodetector with high reflectance GaAs/ALAs DBR mirrors has also been demonstrated and shown the selectively detecting function with the FWHM of peak response of 12 nm.
Resumo:
Native Oxide AlAs layer were employed to block the current injection from the tup anode. The luminous intensity exceeded 75 mcd of the LED chip with native oxide AlAs layer sandwiched 5 mu m AlGaAs current spreading layer under 20 mA current injection. Electrical and optical properties the LED chip and plastically sealed lamp were measured. Aging of the LED chip and lamp were performed under 70 degrees C and room temperature, Experiment results shown that there is no apparent effect of the native oxided AlAs layer and the process on the reliability of the LED devices.
Resumo:
A novel coupled distributed Bragg reflector (DBR) with double thickness periods was theoretically analyzed based on the spontaneous radiation properties of high brightness AlGaInP light emitting diodes(LED). Several important factors were considered including spontaneous radiation angle distribution, absorption and FTR of DBR. Calculation results showed that the optimum optical thickness of single layer of the DBR deviates from 1/4 lambda. AIGaInP high brightness light emitting diodes both with Al0.5Ga0.5As/AlAs coupled DBR and with conventional DBR were fabricated by metalorganic chemical vapor deposition(MOCVD). X-ray double crystal diffraction and reflection spectrum were employed to determine the thickness and reflectivity of the DBR. It was found that reflectivity of coupled DBR is less sensitive to incident angle than conventional DBR, higher external quantum efficiency of light emitting diodes with coupled DBR was obtained than that with conventional DBR.
Resumo:
Orange AlGaInP high brightness light emitting diodes (LEDs) were fabricated by low pressure metalorganic chemical vapor deposition(LP-MOCVD) technology. AlGaInP double heterojunction structure was used as active layer. 15 pairs of Al0.5Ga0.5As/AlAs distributed Bragg reflector and 7 mu m Al0.8Ga0.2As current spreading layer were employed to reduce the absorption of GaAs substrate and upper anode respectively. At 20mA the LEDs emitting wavelength was between 600-610nm with 18.3nm FWHM, 0.45mW radiation power and 1.7% external quantum efficiency. Brightness of the LED chips and LED lamps with 15 degrees viewing angle(2 theta(1/2)) reached 30mcd and 1000mcd respectively.
Resumo:
Device-quality a-Si:H films were prepared by glow discharge CVD with pure or H-diluted silane as well as by hot-wire CVD. The hydrogen content was varied from similar to 2 to 15 at. %. The Si-H bond absorption and its light-soaking-induced changes were studied by IR and differential IR absorption spectroscopes. The results indicate that the more stable sample exhibits an increase of the absorption at wave number similar to 2000 cm(-1), and the less stable one exhibits a decrease at similar to 2040 cm(-1) and an increase at similar to 1880 cm(-1).
Resumo:
With the accumulation of experimental data, it has been recognized by many that the light-induced metastable change of a-Si:H, Staebler-Wronski effect (SWE), may be related to a structural instability of the whole a-Si:H network. However, direct evidence of such a structural change is still lacking. In the present paper, the efforts of our laboratory in this direction will be reviewed, including the light-induced changes of Si-H bond absorption, low frequency dielectric response, and an apparent photo-dilation effect.
Resumo:
Resumo:
The formations of the surface plasmonpolariton (SPP) bands in metal/air/metal (MAM) sub-wavelength plasmonic grating waveguide (PGW) are proposed. The band gaps originating from the highly localized resonances inside the grooves can be simply estimated from the round trip phase condition. Due to the overlap of the localized SPPs between the neighboring grooves, a Bloch mode forms in the bandgap and can be engineered to build a very flat dispersion for slow light. A chirped PGW with groove depth varying is also demonstrated to trap light, which is validated by finite-difference time-domain (FDTD) simulations with both continuous and pulse excitations.
Resumo:
Based upon a hybrid ferromagnet/semiconductor structure consisting of two-dimensional electron gas and a pair of surface ferromagnetic stripes on top, we have theoretically investigated the effect of in-plane stray field omitted frequently in previous studies on the spin-dependent ballistic transport properties in hybrid structure. It is demonstrated here that, in combination with an external-controllable electrostatic modulation, the concerned structure shows a similar function as a lateral spin-polarized resonant tunneling device, where the strong spin-filtering effect occurs and nearly single-mode polarization is anticipated for the proper modulation. More importantly, the spin polarity of transmission electron can be easily transferred from one extreme to the other by switching the magnetization of stripes, showing the promising application as an efficient spin aligner in the developing semiconductor spintronics.