998 resultados para IMPLANTED SI
Resumo:
The surface morphology of GaN grown by MOCVD on GaN/Si template was studied. Rough morphology and deep pinhole defects on some surface areas of the samples were observed and studied. The formation of rough morphology is possibly related to Ga-Si alloy produced due to poor thermal stability of template at high temperature. The deep pinhole defects generated are deep down to the surface of MBE-grown GaN/Si template. The stress originated from the large thermal expansion coefficient difference between GaN and Si may be related to the formation of the pinhole defects. The surface morphology of the GaN can be improved by optimizing the GaN/Si template and decreasing the growth temperature.
Resumo:
PL properties of Er3+ doped SiOx films containing Si nanoparticles have been studied. Er3+ emission intensity does not depend strongly upon crystallinity of Si clusters. The films can yield efficient Er3+ emission.
Resumo:
Low cost Si-based tunable InGaAs RCE photodetectors operating at 1.3similar to1.6 mum were fabricated using sol-gel bonding. A tuning range of 14.5 nm, a quantum efficiency of 44% at 1476 nm and a 3-dB bandwidth of 1.8 GHz were obtained.
Resumo:
Two series of films has been prepared by using a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic properties of the films have been investigated as a function of crystalline fraction. In comparison with typical a-Si:H, these diphasic films with a crystalline fraction less than 0.3 show a similar optical absorption coefficient, higher mobility life-time product ( LT) and higher stability upon light soaking. By using the diphasic nc-Si/a-Si films as the intrinsic layer, a p-i-n junction solar cell has been prepared with an initial efficiency of 9. 10 % and a stabilized efficiency of 8.56 % (AM 1.5, 100 mW/cm(2)).
Resumo:
Homoepitaxial growth of 4H-SiC on off-oriented n-type Si-face (0001) substrates was performed in a home-made hot-wall low pressure chemical vapor deposition (LPCVD) reactor with SiH4 and C2H4 at temperature of 1500 C and pressure of 20 Torr. The surface morphology and intentional in-situ NH3 doping in 4H-SiC epilayers were investigated by using atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS). Thermal oxidization of 4H-SiC homoepitaxial layers was conducted in a dry O-2 and H-2 atmosphere at temperature of 1150 C. The oxide was investigated by employing x-ray photoelectron spectroscopy (XPS). 4H-SiC MOS structures were obtained and their C-V characteristics were presented.
Resumo:
A new metal catalysis-free method of fabricating Si or SiO2 nanowires (NWs) compatible with Si CMOS technology was proposed by annealing SiOx (x < 2) films deposited by plasma -enhanced chemical vapor deposition (PECVD). The effects of the Si content (x value) and thickness of SiOx films, the annealing process and flowing gas ambient on the NW growth were studied in detail. The results indicated that the SiOx film of a thickness below 300 rim with x value close to 1 was most favorable for NW growth upon annealing at 1000-1150 degrees C in the flowing gas mixture of N-2 and H-2. NWs of 50-100nm in diameter and tens of micrometers in length were synthesized by this method. The formation mechanism was likely to be related to a new type of oxide assisted growth (OAG) mechanism, with Si nanoclusters in SiOx films after phase separation serving as the nuclei for the growth of NWs in SiOx films > 200nm, and SiO molecules from thin SiO, film decomposition inducing the NW growth in films < 100nm. An effective preliminary method to control NW growth direction was also demonstrated by etching trenches in SiOx films followed by annealing.
A simple method to realize large-bandwidth and high-efficiency wavelength conversion in Si waveguide
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T07:06:36Z No. of bitstreams: 1 A simple method to realize large-bandwidth and high-efficiency wavelength conversion in Si waveguide.pdf: 277035 bytes, checksum: ca7e272b2286b305d385825417857f21 (MD5)
Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells
Resumo:
In order to enhance light absorption of thin film poly-crystalline silicon (TF poly-Si) solar cells over a broad spectral range, and quantify the effectiveness of nanoshell light trapping structure over the full solar spectrum in theory, the effective photon trapping flux (EPTF) and effective photon trapping efficiency (EPTE) were firstly proposed by considering both the external quantum efficiency of TF poly-Si solar cell and scattering properties of light trapping structures. The EPTF, EPTE and scattering spectrum exhibit different behaviors depending on the geometric size and density of nanoshells that form the light trapping layer. With an optimum size and density of SiO2/Au nanoshell light trapping layer, the EPTE could reach up to 40% due to the enhancement of light trapping over a broad spectral range, especially from 500 to 800 nm.
Resumo:
n-ZnO/p-Si heterojunction light-emitting diodes (LEDs) show weak defect-related electroluminescence (EL). In order to analyze the origin of the weak EL, the energy band alignment and interfacial microstructure of ZnO/Si heterojunction are investigated by x-ray photoelectron spectroscopy. The valence band offset (VBO) is determined to be 3.15 +/- 0.15 eV and conduction band offset is -0.90 +/- 0.15 eV, showing a type-II band alignment. The higher VBO means a high potential barrier for holes injected from Si into ZnO, and hence, charge carrier recombination takes place mainly on the Si side rather than the ZnO layer. It is also found that a 2.1 nm thick SiOx interfacial layer is formed at the ZnO/Si interface. The unavoidable SiOx interfacial layer provides to a large number of nonradiative centers at the ZnO/Si interface and gives rise to poor crystallinity in the ZnO films. The weak EL from the n-ZnO/p-Si LEDs can be ascribed to the high ZnO/Si VBO and existence of the SiOx interfacial layer.
Resumo:
Epitaxial growth of semiconductor films in multiple-wafer mode is under vigorous development in order to improve yield output to meet the industry increasing demands. Here we report on results of the heteroepitaxial growth of multi-wafer 3C-SiC films on Si(100) substrates by employing a home-made horizontal hot wall low pressure chemical vapour deposition (HWLPCVD) system which was designed to be have a high-throughput, multi-wafer (3x2-inch) capacity. 3C-SiC film properties of the intra-wafer and the wafer-to-wafer including crystalline morphologies, structures and electronics are characterized systematically. The undoped and the moderate NH3 doped n-type 3C-SiC films with specular surface are grown in the HWLPCVD, thereafter uniformities of intra-wafer thickness and sheet resistance of the 3C-SiC films are obtained to be 6%similar to 7% and 6.7%similar to 8%, respectively, and within a run, the deviations of wafer-to-wafer thickness and sheet resistance are less than 1% and 0.8%, respectively.
Resumo:
A 1.55-mu m hybrid InGaAsP-Si laser was fabricated by the selective-area metal bonding method. Two Si blocking stripes, each with an excess-metals accommodated space, were used to separate the optical coupling area and the metal bonding areas. In such a structure, the air gap between the InGaAsP structure and Si waveguide has been reduced to be negligible. The laser operates with a threshold current density of 1.7 kA/cm(2) and a slope efficiency of 0.05 W/A under pulsed-wave operation. Room-temperature continuous lasing with a maximum output power of 0.45 mW is realized.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-07T07:37:01Z No. of bitstreams: 1 应杰--硕士毕业论文.pdf: 1592507 bytes, checksum: 1f4b3af275bf385f2180286c3b90faf8 (MD5)