921 resultados para self-formed quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a new superluminescent diodes (SLD) aimed at wide spectrum-quantum dot superluminescent diodes (QD-SLD), which is characterized by the introduction of a self-assembled asymmetric quantum dot pairs active region into conventional SLID structure. We investigated the structure and optical properties of a bilayer sample with different InAs deposition amounts in the first and second layer. We find that the structure of a self-assembled asymmetric quantum dot pairs can operate up to a 150 nm spectral width. In addition, as the first QDs' density can modulate the density of the QDs on the second layer, due to relatively high QDs density of the first layer, we can get the strong PL intensity from a broad range. We think that for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for QW-SLD. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical and electrical properties of ZnSe self-organized quantum dots were investigated using photoluminescence, capacitance-voltage, and deep level transient Fourier spectroscopy techniques. The temperature dependence of photoluminescence was employed to clarify the mechanism of photoluminescence thermal quenching processes in ZnSe quantum dots. A theoretic fit on considering a two-step quenching processes well explained the experimental data. The apparent carrier concentration profile obtained from capacitance-voltage measurements exhibits an accumulation peak at the depth of about 100nm below the sample surface, which is in good agreement with the location of the quantum dot layer. The electronic ground state of ZnSe quantum dots is determined to be about 0.11 eV below the conduction band of ZnS, which is similar to that obtained by simulating the thermal quenching of ZnSe photoluminescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth interruption was introduced during the growth of GaAs capping layer of self-organized quantum dots. The comparison of two QD lasers with and without growth interruption in their active regions shows that growth interruption leads to lower threshold current, higher characteristic temperature, and weaker temperature dependence of lasing energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organized InAs/In0.53Ga0.47As quantum dot (QD) multilayers were grown on InP substrate by molecular beam epitaxy. The structural and optical properties were characterized by using cross-sectional transmission electron microscopy (TEM) and photoluminescence (PL), respectively. Vertically aligned InAs quantum dots multilayer on InP substrate is demonstrated for the first time. Photoluminescence with a line width of similar to 26 meV was observed from the QDs multilayer. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoluminescence of self-assembled multilayer In0.55Al0.45As/Al0.5Ga0.5As quantum dot (QD) was measured at various temperatures. Strong photoluminescence of wetting layer (WL) and quantum dots were observed at the same time. Furthermore, direct excitons thermal transfer process between the wetting layer and quantum dots was observed. In the study of temperature dependence of PL intensity it was found that the PL peak of wetting layer contains two quenching processes: at low temperature, excitons are thermally activated from localized states to extended two-dimensional states and then trapped by QDs; at high temperature excitons quench through the X valley of barriers. Using rate equation excitons thermal transfer and quenching processes were analyzed quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel superluminescent diode (SLD) with a quantum dot (QD) active layer, which should give a wider output spectrum than a conventional quantum well SLD. The device makes use of inhomogeneous broadness of gain spectrum resulting from size inhomogeneity of self-assembled quantum dots grown by Stranski-Krastanow mode. Taking a design made out in the InxGa1-xAs/GaAs system for example, the spectrum characteristics of the device are simulated realistically, 100-200 nm full width of half maximum of output spectrum can be obtained. The dependence of the output spectrum on In composition, size distribution and injection current of the dots active region is also elaborated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal-incident infrared absorption in the 8-12-mu m-atmospheric spectral window in the InGaAs/GaAs quantum-dot superlattice is observed. Using cross-sectional transmission electron microscopy, we find that the InGaAs quantum dots are perfectly vertically aligned in the growth direction (100). Under the normal incident radiation, a distinct absorption peaked at 9.9 mu m is observed. This work indicates the potential of this quantum-dot superlattice structure for use as normal-incident infrared imaging focal arrays application without fabricating grating structures. (C) 1998 American Institute of Physics. [S0003-6951(98)01151-6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InxGa1-xAs quantum dots (QDs) on (311) and (100) GaAs surfaces have been grown by conventional solid source molecular beam epitaxy. Spontaneously ordering alignment of InxGa1-xAs QDs with lower In content around 0.3 has been observed on As-terminated (B type) surfaces. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311) B surface, and is strongly dependent upon the In content x. The ordering alignment becomes significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) and (311) Ga-terminated (A type) substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous formation of InAs quantum wires in InAlAs on InP(001) via sequential chain-like coalescence of quantum dots along [1 (1) over bar 0] is realized. Theoretical calculations based on the energetics of interacting steps provide a qualitative explanation for the experimental results. Sequential coalescence of initially isolated dots reduces the total free energy strikingly. Thus the wire-like structure is energetically favorable. (C) 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used Deep Level Transient Spectroscopy to investigate self-organized InAs/GaAs quantum dots. The existence of different dot families is confirmed by the deconvolution of the spectra in Gaussian components with full width at half maximum of 60-70meV. The strain of quantum dots is responsible for the relaxation of large quantum dots leading to generation of dislocations. (C) 1998 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs quantum dots inserted at the middle of a GaAs quantum well structure have been investigated by transmission electron microscopy and scanning transmission electron microscopy. We find that the growth condition of the overlayer on the InAs dots can lead to drastic changes in the structure of the dots. We attribute the changes to a combination of factors such as preferential growth of the overlayer above the wetting layers because of the strained surfaces and to the thermal instability of the InAs dots at elevated temperature. The result suggests that controlled sublimation, through suitable manipulation of the overlayer growth conditions, can be an effective tool to improve the structure of the self-organized quantum dots and can help tailor their physical properties to any specific requirements of the device applications. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.