937 resultados para inbred strain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlation between the energy band-gap of AlxGa1-xN epitaxial thin films and lattice strain was investigated using both High Resolution X-ray Diffraction (HRXRD) and Spectroscopic Ellipsometry (SE). The Al fraction, lattice relaxation, and elastic lattice strain were determined for all AlxGa1-xN epilayers, and the energy gap as well. Given the type of intermediate layer, a correlation trend was found between energy band-gap bowing parameter and lattice mismatch, the higher the lattice mismatch is, the smaller the bowing parameter (b) will be.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8 x 10(-4). A clear narrow band detection spectrum centered at 4.5 mu m has been observed above room temperature for a device with 200 x 200 mu m(2) square mesa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more in atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The second-harmonic generation (SHG) from Si1-xGex alloy films has been investigated by near-infrared femtosecond laser. Recognized by s-out polarized SHG intensity versus rotational angle of sample, the crystal symmetry of the fully strained Si0.83Ge0.17 alloy is found changed from the O-h to the C-2 point group due to the inhomogeneity of the strain. Calibrated by double crystal X-ray diffraction, the strain-induced chi((2)) is estimated at 5.7 x 10(-7) esu. According to the analysis on p-in/s-out SHG, the strain-relaxed Si0.10Ge0.90 alloy film is confirmed to be not fully relaxed, and the remaining strain is quantitatively determined to be around 0.1%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

20-period strained-layer superlattices of nominal composition and width Ge0.2Si0.8 (5 nm)/Si(25 nm) and Ge0.5Si0.5 (5 nm)/Si(25 nm) were studied by double-crystal X-ray diffraction. The Ge content x was determined by computer simulation of the diffraction features from the superlattice. This method is shown to be independent of the relaxation of the superlattice. Alternatively, x can be obtained from the measured difference DELTAa/a in lattice spacing perpendicular to the growth plane. It is sensitive to the relaxation. Comparing the results obtained in these two different ways, information about the relaxation of the superlattices can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures of quantum wires formed by lateral strain are studied in the framework of the effective-mass envelope-function method. The hole energy levels, wave functions, and optical transition matrix elements are calculated for the real quantum-wire structure, and the results are compared with experiment. It is found that one-dimensional confinement effects exist for both electronic and hole states related to the n (001) = 1 state. The lateral strained confinement causes luminescence-peak redshifts and polarization anisotropy, and the anisotropy is more noticeable than that in the unstrained case. The variation of hole energy levels with well widths in the [110] and [001] directions and wave vector along the [110BAR] direction are also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage removal and strain relaxation in the As+-implanted Si0.57Ge0.43 epilayers were studied by double-crystal x-ray diffractometry and transmission electron microscopy. The results presented in this paper indicate that rapid thermal annealing at temperatures higher than 950 degrees C results in complete removal of irradiation damage accompained by the formation of GeAs precipitates which enhance the removal process of dislocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated a 20 period dislocation-free InGaAs/GaAs quantum dot superlattice which is self-formed by the strain from the superlattice taken as a whole rather than by the strain from the strained single layer. The island formation does not take place while growing the corresponding strained single layer. From the variation of the average dot height in each layer, the strain distribution and relaxation process in the capped superlattice have been examined. It is found that the strain is not uniformly distributed and the greatest strains occur at two interfaces between the superlattice and the substrate and the cap layer in the capped superlattice. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dissociated screw dislocation parallel to the interface was found in the epitaxial layer of the Ge0.17Si0.83 Si(001) system. It is shown that this dissociated screw dislocation which consists of two 30 degrees partials can relieve misfit strain energy, and the relieved misfit energy is proportional to the width of the stacking fault between the two partials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperature is reported. Accurate control of layer thickness and strain-compensated material composition is demonstrated using X-ray diffraction. An output power of at least 45mW per facet is realized for a 20μm-wide and 2mm-long laser at room temperature.