987 resultados para HIPS-g-MA
Resumo:
Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.
Resumo:
A numerical study of the defect modes in two-dimensional photonic crystals with deformed triangular lattice is presented by using the supercell method and the finite-difference time-domain method. We find the stretch or shrink of the lattice can bring the change not only on the frequencies of the defect modes but also on their magnetic field distributions. We obtain the separation of the doubly degenerate dipole modes with the change of the lattice and find that both the stretch and the shrink of the lattice can make the dipole modes separate large enough to realize the single-mode emission. These results may be advantageous to the manufacture of photonic crystal lasers and provide a new way to realize the single-mode operation in photonic crystal lasers.
Resumo:
We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.
Resumo:
Passive mode locking of a diode-pumped Nd:GdVO4 laser was demonstrated using In0.25Ga0.75As as saturable absorber as well as output coupler. The pulse width was measured to be about 16 ps with a repetition rate of 146 MHz. The average output power was 120 mW with pump power of 6 W. To our knowledge, this is the first demonstration on a passively mode-locked Nd:GdVO4 laser by using an In0.25Ga0.75As output coupler. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.
Resumo:
AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Photoluminescence from Er3+-implanted Si-in-SiN, films emitting efficiently visible light were investigated. A Stark structure in the Er3+ photoluminescence spectrum was observed at room temperature, which reveals more than one site symmetry for the Er3+-centers in the Si-in-SiN, matrix. The correlation between the visible photoluminescence from the silicon nanoparticles and the 1.54 mu m emission from the Er3+-centers was discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electronic structures and electron g factors of InSb1-sNs and GaAs1-sNs nanowires and bulk material under the magnetic and electric fields are investigated by using the ten-band k.p model. The nitrogen doping has direct and indirect effects on the g factors. A giant g factor with absolute value larger than 900 is found in InSb1-sNs bulk material. A transverse electric field can increase the g factors, which has obviously asymmetric effects on the g factors in different directions. An electric field tunable zero g factor is found in GaAs1-sNs nanowires. (C) 2007 American Institute of Physics.
Resumo:
The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k center dot p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319. (c) 2007 American Institute of Physics.
Resumo:
We have fabricated surface plasmon modulated nano-aperture vertical-cavity surface-emitting lasers (VCSELs) from common 850 nm VCSELs using focus ion beam etching with Ga+ ion source. The far-field output power is about 0.3 mW at a driving current of 15 mA with a sub-wavelength aperture surrounded by concentric periodic grooves. The enhancement of transmission intensity can be explained by diffraction and enhanced fields associated with surface plasmon. This structure also exhibits beaming properties.
Resumo:
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-mu m-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.
Resumo:
Inductively coupled plasma (ICP) etching of InP in Cl-2/BCl3 gas mixtures is studied in order to achieve low-damage and high-anisotropy etching of two-dimensional InP/InGaAsP photonic crystal. The etching mechanisms are discussed and the effect of plasma heating on wafer during etching is analyzed. It is shown that the balance between the undercut originating from plasma heating and the redeposition of sputtering on the side-wall is crucial for highly anisotropic etching, and the balance point moves toward lower bias when the ICP power is increased. High aspect-ratio etching at the DC bias of 203 V is obtained. Eventually, photonic crystal structure with nearly 90 degrees side-wall is achieved at low DC bias after optimization of the gas mixture.
Resumo:
The hole Rashba effect and g-factor in InP nanowires in the presence of electric and magnetic fields which bring spin splitting are investigated theoretically in the framework of eight-band effective-mass envelop function theory, by expanding the lateral wave function in Bessel functions. It is well known that the electron Rashba coefficient increases nearly linearly with the electric field. As the Rashba spin splitting is zero at zero k(z) ( the wave vector along the wire direction), the electron g-factor at k(z) = 0 changes little with the electric field. While we find that as the electric field increases, the hole Rashba coefficient increases at first, then decreases. It is noticed that the hole Rashba coefficient is zero at a critical electric field. The hole g-factor at k(z) = 0 changes obviously with the electric field.
Resumo:
Two silicon light emitting devices with different structures are realized in standard 0.35 mu m complementary metal-oxide-semiconductor (CMOS) technology. They operate in reverse breakdown mode and can be turned on at 8.3 V. Output optical powers of 13.6 nW and 12.1 nW are measured at 10 V and 100 mA, respectively, and both the calculated light emission intensities are more than 1 mW/Cm-2. The optical spectra of the two devices are between 600-790 nm with a clear peak near 760 nm..
Resumo:
High quality n-type CdS nanobelts (NBs) were synthesized via an in situ indium doping chemical vapor deposition method and fabricated into field effect transistors (FETs). The electron concentrations and mobilities of these CdS NBs are around (1.0x10(16)-3.0x10(17))/cm(3) and 100-350 cm(2)/V s, respectively. An on-off ratio greater than 10(8) and a subthreshold swing as small as 65 mV/decade are obtained at room temperature, which give the best performance of CdS nanowire/nanobelt FETs reported so far. n-type CdS NB/p(+)-Si heterojunction light emitting diodes were fabricated. Their electroluminescence spectra are dominated by an intense sharp band-edge emission and free from deep-level defect emissions. (c) 2006 American Institute of Physics.