952 resultados para semi-insulating
Resumo:
Fe-doped semi-insulating (SI) InP has become semi-conducting (SC) material completely after annealing at 900 V for 10 hours. Defects in the SC and SI InP materials have been studied by deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) respectively. The DLTS only detected Fe acceptor related deep level defect with significant concentration, suggesting the formation of a high concentration of shallow donor in the SC-InP TSC results confirmed the nonexistence of deep level defects in the annealed SI-InP. The results demonstrate a significant influence of the thermally induced defects on the electrical properties of SI-InP. The formation mechanism and the nature of the shallow donor defect have been discussed based on the results.
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Improvement of the electrical property of semi-insulating InP by suppression of compensation defects
Resumo:
Semi-insulating (SI) InP obtained by iron phosphide ambient annealing has very low concentration of deep level defects and better electrical property than SI-InP annealed in phosphorus ambient. The defect suppression phenomenon correlates with Fe diffusion and substitution in the annealing process. Analysis of the experimental result suggests that a high activation ratio of incorporated Fe in InP has an effect of defect suppression in Fe-doped and Fe-diffused SI-InP.
Resumo:
The high-resolution spectral measurements for new local vibrational modes near 714 cm-1 due to the oxygen defect in semi-insulating GaAs are analyzed on the basis of a model calculation by self-consistent bond orbital approach. Two charge states of oxygen atom with 1 and 2 extra electrons are assigned to be responsible for these local modes. The observed frequencies are explained by the properties of Ga-O-1 and Ga-O-2 bonds and the calculated cohesive energy indicates that the O-2 state is stable. The results are in good agreement with the kinetic analysis.
Resumo:
The influences of arsenic interstitials and dislocations on the lattice parameters of undoped semi-insulating (SI) GaAs single crystals were analyzed. It was shown that the dislocations in such crystals serve as effective gettering sites for arsenic interstitials due to the deformation energy of dislocations. The average excess arsenic in GaAs epilayers grown by molecular-beam epitaxy (MBE) at low temperatures (LT) is about 1%, and the lattice parameters of these epilayers are larger than those of liquid-encapsulated Czochralski-grown (LEG) SI-GaAs by about 0.1%. The atomic ratio, [As]/([Ga] + [As]), in SI-GaAs grown by low-pressure (LP) LEC is the nearest to the strict stoichiometry compared with those grown by high-pressure (HP) LEC and vertical gradient freeze (VGF). After multiple wafer annealing (MWA), the crystals grown by HPLEC become closer to be strictly stoichiometric.
Resumo:
The influences of microdefects and dislocations on the lattice parameters of undoped semi-insulating GaAs single crystals were analyzed, and a novel nondestructive method for measuring stoichiometry in undoped semi-insulating GaAs was established in this letter. The comparison of this method with coulometric titration indicates that the method of nondestructive measurements is indeed convenient and reliable. (C) 1996 American Institute of Physics.
Resumo:
The dislocations and precipitates in SI-GaAs single crystals are revealed by ultrasonic-aided Abrahams-Buiocchi etching (USAB), and the etch pits are observed and measured by metalloscope and scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), respectively. The size of etch pit revealed by USAB etching is about 1 order of magnitude smaller than that revealed by molten KOH. The amount of arsenic atoms in the dislocation-dense zone is about 1% larger than that in an adjacent dislocation-free zone measured by EDS attached to SEM, which indicates that the excess arsenic atoms adjacent to the dislocation-dense zone are attracted to the dislocations and precipitate there due to the deformation energy.
Resumo:
A technologically important undoped semi-insulating (SI) GaAs single crystal was successfully grown in the Chinese recoverable satellite as far as we know for the first time by using a similar growth configuration described previously. The experimental results proved that the space SI GaAs crystals have a lower density of defects and defect-impurity complexes as well as a better uniformity.
Resumo:
The electronic absorption of EL2 centers has been clarified to be related to the electron acid hole photoionizations, and the transition from its ground state to metastable state, respectively. Under an illumination with a selected photon energy in the near infrared region, these three processes with different optical cross sections will show different kinetics against the illumination time. It has recently been shown that the photosensitivity (measured under 1.25 eV illumination) of the local vibrational mode absorption induced by some deep defect centers in SI-GaAs is a consequence of the electron and hole photoionizations of EL2. This paper directly measures the kinetics of the electronic transition associated with EL2 under 1.25 eV illumination, which implies the expected charge transfer among different charge states of the EL2 center. A calculation based on a simple rate equation model is in good agreement with the experimental results.
Resumo:
The influence of the sidegate voltage on the Schottky barrier in the ion-implanted active layer via the Schottky pad on the semi-insulating GaAs substrate was observed, and the mechanism for such an influence was proposed. (C) 1996 American Institute of Physics.
Resumo:
Semi-insulating (SI) InP materials have been prepared under different stoichiometric conditions, including Fe-doping in indium-rich melt and high temperature annealing undoped wafer in phosphorus and iron phosphide ambients. Deep level defects related with non-stoichiometry have been detected in the SI-InP samples. A close relationship between the material quality of electrical property and native deep defects has been revealed by a comprehensive study of defects in as-grown Fe-doped and annealed undoped SI-InP materials. Fe-doped SI-InP material with low carrier mobility and poor thermal stability contains a high concentration of deep defects with energy levels in the range of 0.1-0.4eV. The suppression of the defects by high temperature annealing undoped InP leads to the manufacture of high quality SI-InP with high mobility and good electrical uniformity. A technology for the growth of high quality SI-InP through stoichiometry control has been proposed based on the results.
Resumo:
Properties of Fe-doped semi-insulating (SI) InP with different iron concentrations are studied by using Hall effect, current-voltage (I-V), photoluminescence spectroscopy (PL) and photocurrent spectroscopy (PC) measurements. I-V characteristics of SI InP strongly depend on Fe doping concentration. Fe doping concentration also influences optical properties and defective formation in as-grown SI InP. Band-gap narrowing phenomenon and defects in Fe doped SI InP are studied using PI and PC.