311 resultados para InxGa1-xAs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

InxGa1-xAs/InP (0.39 less than or equal to x less than or equal to 0.68) strained-layer quantum wells having 20 wells with thickness of 50 Angstrom in a P-i-N configuration were grown by gas source molecular beam epitaxy (GSMBE). High-resolution X-ray diffraction rocking curves show the presence of up to seven orders of sharp and intense satellite reflection, indicative of the structural perfection of the samples. Low-temperature photoluminescence and low-temperature absorption spectra were used to determine the exciton transition energies as a function of strain. Good agreement is achieved between exciton transition energies obtained experimentally at low temperature with those calculated using the deformation potential theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present effective-mass calculations of the bound-state energy levels of electrons confined inside lens-shaped InxGa1-xAs quantum dots (QDs) embedded in a GaAs matrix, taking into account the strain as well as the In gradient inside the QDs due to the strong In segregation and In-Ga intermixing present in the InxGa1-xAs/GaAs system. In order to perform the calculations, we used a continuum model for the strain, and the QDs and wetting layer were divided into their constituting monolayers, each one with a different In concentration, to be able to produce a specific composition profile. Our results clearly show that the introduction of such effects is very important if one desires to correctly reproduce or predict the optoelectronic properties of these nanostructures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(311)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows deferring from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-xAs solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [01 (1) over bar] and [(2) over bar 33], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between neighbouring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. Photoluminescence (PL) result demonstrates that QDs grown on (311)B have the narrowest linewidth and the strongest integrated intensity, compared to those grown on (100) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the photoemission from quantum wire and quantum dot superlattices with graded interfaces of optoelectronic materials on the basis of newly formulated electron dispersion relations in the presence of external photo-excitation. Besides, the influence of a magnetic field on the photoemission from the aforementioned superlattices together with quantum well superlattices in the presence of a quantizing magnetic field has also been studied in this context. It has been observed taking into account HgTe/Hg1-xCdxTe and InxGa1-xAs/InP that the photoemission from these nanostructures increases with increasing photon energy in quantized steps and exhibits oscillatory dependences with the increase in carrier concentration. Besides, the photoemission decreases with increasing light intensity and wavelength, together with the fact that said emission decreases with increasing thickness exhibiting oscillatory spikes. The strong dependences of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six applications in the fields of low dimensional systems in general. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photoemission from quantum wires and dots of effective mass superlattices of optoelectronic materials was investigated on the basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforementioned superlattices, together with quantum well superlattices under magnetic quantization, has also been investigated in this regard. It appears, taking HgTe/Hg1-xCdxTe and InxGa1-xAs/InP effective mass superlattices, that the photoemission from these quantized structures is enhanced with increasing photon energy in quantized steps and shows oscillatory dependences with the increasing carrier concentration. In addition, the photoemission decreases with increasing light intensity and wavelength as well as with increasing thickness exhibiting oscillatory spikes. The strong dependence of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six different applications in the fields of low dimensional systems in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Semiconductor Quantum Well (QW) microtubes have been fabricated by strain-induced self assembling technique. Three types of multilayer structures have consisted of GaAs/InxGa1-xAs strained layers containing with various thickness of Monolayers of (GaAs/AlGaAs) QW were grown by Varian Gen II Molecular Beam Epitaxy (MBE) on the GaAs (100) substrate. The shape of the rolled up microtubes provide a clear idea about the formation of three dimensional micro- and nanostructures. Micro-Raman and photoluminescence (PL) studies were performed to the QW microtubes and as compared with their grown area on the GaAs substrate. The results of Raman spectra show the frequency shift of phonon modes measured in tube and compared with the grown area due to residual strain. The PL peaks of the microtube were red-shifted due to the strain effect and transition of bandgap from Type-II to Type-I. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop 5.5-mu m InxGa1-xAs/InyAl1-yAs strain-compensated quantum cascade lasers with InP and InGaAs cladding layers by using solid-source molecular-beam epitaxy. Pulse operation has been achieved up to 323 K (50 degrees C) for uncoated 20-mu m-wide and 2-mm-long devices. These devices display an output power of 36 mW with a duty cycle of 1% at room temperature. In continuous wave operation a record peak optical power of 10 mW per facet has been measured at 83 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel approach for positioning InAs islands on GaAs(110) by cleaved-edge overgrowth is reported. The first growth sample contains a strained InxGa1-xAs/GaAs superlattice of varying indium fraction and thickness, which acts as a strain nanopattern for the cleaved edge overgrowth. The formation of aligned islands is observed by means of atomic force microscopy. The ordering of the aligned islands and the structure of a single InAs island are found to depend on the properties of the underlying InxGa1-xAs/GaAs superlattice and molecular beam epitaxy growth conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method for positioning of InAs islands on GaAs (110) by cleaved edge overgrowth is reported. The first growth sample contains strained InxGa1-xAs/GaAs superlattice (SL) of varying indium fraction, which acts as a strain nanopattern for the cleaved-edge overgrowth. Atoms incident on the cleaved edge will preferentially migrate to InGaAs regions where favorable bonding sites are available. By this method InAs island chains with lateral periodicity defined by the thickness of InGaAs and GaAs of SL have been realized by molecular beam epitaxy (MBE). They are observed by means of atomic force microscopy (AFM). The strain nanopattern's effect is studied by the different indium fraction of SL and MBE growth conditions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InAs quantum dots (QDs) are grown on the cleaved edge of an InxGa1-xAs/GaAs supperlattice experimentally and a good linear alignment of these QDs on the surface of an InxGa1-xAs layer has been realized. The modulation effects of periodic strain on the substrate are investigated theoretically using a kinetic Monte Carlo method. Our results show that a good alignment of QDs can be achieved when the strain energy reaches 2% of the atomic binding energy. The simulation results are in excellent qualitative agreement with our experiments. (C) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembled quantum dots and wires were obtained in the InxGa1-xAs/GaAs and InAs/In0.52Al0.48As/lnP systems, respectively, using molecular beam epitaxy (MBE). Uniformity in the distribution, density, and spatial ordering of the nanostructures can be controlled to some extent by adjusting and optimizing the MBE growth parameters. Laser devices and superluminescent diodes were fabricated with InAs/GaAs self-assembled quantum dots as the active region.