995 resultados para Zhou li.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By integrating a three-barrier, two-well resonant tunneling structure with a 1.2-mu m-thick, slightly doped n-GaAs layer, a photoinduced voltage shift on the order of magnitude of 100 mV in resonant current peaks has been verified at an irradiance of low light power density. The 1.2-mu m-thick, slightly doped n-GaAs layer manifests itself of playing an important role in enhancing photoelectric sensitivity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a specially- designed three-barrier-double-well tunneling structure, electron injecting from the emitter in combination with escaping through a resonant-tunneling structure were used to adjust and control the filling of electrons in different subbands. It was observed that the occupation in the first-excited electron state can result in a suppression to quantum confinement Stark effect. Moreover, at very low bias, a series of intrigue photoluminescence peaks appeared as a small quantity of excess electron was filled in the ground state of the quantum well, that cannot be explained by the theory of hand-to-hand transition in the framework of single electron picture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under selective photo-excitation, the capacitance response of internal tunnelling coupling in quantum-dots-imbedded heterostructures is studied to clarify the electronic states and the number densities of electrons filling in the quantum dots (QDs). The random nature for both optical transitions and the filling in a QD assembly makes highly resolved capacitance peaks appear in the C-V characteristic after turning off the photo-excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed the weak antilocalization (WAL) and beating SdH oscillation through magnetotransport measurements performed on a heavily delta-doped In0.52Al0.48As/In0.53Ga0.47As/In0.5Al0.48As single quantum well in an applied magnetic field up to 13 T and a temperature at 1.5 K. Both effects are caused by the strong Rashba spin-orbit (SO) coupling due to high structure inversion asymmetry (SIA). The Rashba SO coupling constant alpha and zerotield spin splitting Delta(0) are estimated and the obtained values are consistent from different analysis for this sample. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetotransport properties of In-0.53 GaAs/In-0.52 AlAs high electron mobility transistor (HEMT) structures with different channel thickness of 10-35 nm have been investigated in magnetic fields up to 13 T at 1.4 K. Fast Fourier transform has been employed to obtain the subband density and mobility of the two-dimensional electron gas in these HEMT structures. We found that the thickness of channel does not significantly enhance the electron density of the two-dimensional electron gas, however, it has strong effect on the proportion of electrons inhabited in different subbands. When the size of channel is 20 nm, the number of electrons occupying the excited subband, which have higher mobility, reaches the maximum. The experimental values obtained in this work are useful for the design and optimization of InGaAs/InAlAs HEMT devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on three heavily Si delta-doped In-0.52 Al-0.48 As/In-0.53 Ga-0.47 As/In-0.52 A(10.48) As single quantum well samples in which two subbands were occupied by electrons. The weak anti-localization (WAL) has been found in such high electron mobility systems. The strong Rashba spin-orbit (SO) coupling is due to the high structure inversion asymmetry (SIA) of the quantum wells. Since the WAL theory model is so complicated in fitting our experimental results, we obtained the Rashba SO coupling constant alpha and the zero-field spin splitting Delta(0) by an approximate approach. The results are consistent with that obtained by the Shubnikov-de Haas (SdH) oscillation analysis. The WAL effect in high electron mobility system suggests that finding a useful approach for deducing alpha and Delta(0) is important in designing future spintronics devices that utilize the Rashba SO coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces in detail the working principle of Si/SiGe Quantum cascade laser(QCL). Appropriate parameters are used to calculate the hole subband structure of Si/Si1-xGex quantum well using a six-band k center dot p method. The dispersion relation and energy band for different layer thickness and compositions are investigated. Meanwhile, the energy separations between hole subbands in Si/Si1-xGex/Si quantum wells are also analyzed. Finally the calculated results are used for the Si/SiGe QCL design, which will be beneficial to the structure optimization of Si/SiGe QCL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si delta-doped In0.65Ga0.35As/In0.52Al0.48As metamorphic high-electron-mobility transistor with InP substrate in a temperature range between 1.5 and 60 K under magnetic field up to 13 T. We studied the Shubnikov-de Haas (SdH) effect and the Hall effect for the In0.65Ga0.35As/In0.52Al0.48As single quantum well occupied by two subbands and obtained the electron concentration and energy levels respectively. We solve the Schrodinger-Kohn-Sham equation in conjunction with the Poisson equation self-consistently and obtain the configuration of conduction band, the distribution of carriers concentration, the energy level of every subband and the Fermi energy. The calculational results are well consistent with the results of experiments. Both experimental and calculational results indicate that almost all of the delta-doped electrons transfer into the quantum well in the temperature range between 1.5 and 60 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on double/single-barrier-doped In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well samples from 1.5 to 60 K in an applied magnetic field up to 13 T. Beating Shubnikov-de Haas oscillation is observed for the symmetrically double-barrier-doped sample and demonstrated due to a symmetric state and an antisymmetric state confined in two coupled self-consistent potential wells in the single quantum well. The energy separation between the symmetric and the antisymmetric states for the double-barrier-doped sample is extracted from experimental data, which is consistent with calculation. For the single-barrier-doped sample, only beating related to magneto-intersubband scattering shows up. The pesudospin property of the symmetrically double-barrier-doped single quantum well shows that it is a good candidate for fabricating quantum transistors. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nation Natural Science Foundation of China 50672079 60676027 60837001 60776007; National Basic Research Program of China (973 Program) 2007CB613404; China-MOST International Sci & Tech Cooperation and Exchange 2008DFA51230

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of mu c-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, X-c, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of mu c-Si:H films with a high crystalline content is enhanced and the stability of mu c-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP mu c-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of mu c-Si:H films. (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the photocurrent response in a double barrier structure with quantum dots-quantum well inserted in central well. When this quantum dots-quantum well hybrid heterostructure is biased beyond + 1 or -I V, the photocurrent response manifests itself as a steplike enhancement, increasing linearly with the light intensity. Most probably, at proper bias condition, the pulling down of the X minimum of GaAs at the outgoing interface of the emitter barrier by the photovoltaic effect in GaAs QW will initiate the r,-X-X tunneling at much lower bias as compared with that in the dark. That gives rise to the observed photocurrent response. (c) 2006 Elsevier B.V. All rights reserved.