964 resultados para Socialer Turnverein (Indianapolis, Ind.)
Resumo:
The semiconductor microlasers based on the equilateral triangle resonator (ETR) can be fabricated from the edge-emitting laser wafer by dry-etching technique, and the directional emission can be obtained by connecting an output waveguide to one of the vertices of the ETR. We investigate the mode characteristics, especially the mode quality factor, for the ETR with imperfect vertices, which is inevitable in the real technique process. The numerical simulations show that the confined modes can still have a high quality factor in the ETR with imperfect vertices. We can expect that the microlasers is a suitable light source for photonic integrated circuits.
Resumo:
Planar punch through heterojunction phototransistors with a novel emitter control electrode and ion- implanted isolation (CE-PTHPT) are investigated. The phototransistors have a working voltage of 3-10V and high sensitivity at low input power. The base of the transistor is completely depleted under operating condition. Base current is zero. The CE-PTHPT has an increased speed and a decreased noise. The novel CE-PTHPT has been fabricated in this paper. The optical gain of GaAlAs/GaAs CE-PTHPT for the incident light power 1.3 and 43nw with the wavelength of 0.8 mu m reached 1260 and 8108. The input noise current calculated is 5.46 x 10(-16) A/H-z(1/2). For polysilicon emitter CE-PTHPT, the optical gain is 3083 at the input power of 0.174 mu w. The optical gain of InGaAs/InP CE-PTHPT reaches 350 for an incident power of 0.3 mu w at the wavelength of 1.55 mu m. The CE-PTHPT detectors is promising as photo detectors for optical fiber communication system.
Resumo:
A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetector operating at 1.3 mum with the full-width at half-maximum of 5.5 nm was demonstrated. The GaInNAs RCE photodetector was grown by molecular-beam epitaxy using an ion-removed dc-plasma cell as nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature that is very beneficial for applications in long-wavelength absorption devices. For a 100-mum diameter RCE photodetector, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3-dB bandwidth is 308 MHz. The reasons resulting in the poor high speed property were analyzed. The tunable wavelength of 18 nm with the angle of incident light was observed.
Resumo:
Si-based SiGe/Si strained MQW long-wavelength photodetectors (PD) with cycle type (Ring Shape) waveguide (CWG) and resonant-cavity-enhanced (RCE) structure have been investigated for the first time for improving the quantum efficiency and response time. The results show that the responsivities are higher than that of conventional PD with a same Ge content reported previously. In addition, RCE-PD has an obvious narrow band response with FWHM less than 6nm.
Resumo:
Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.
Resumo:
The polarization of vertical-cavity surface-emitting laser (VCSEL) can be controlled by electro-optic birefringence. We calculated the birefringence resulted from external electric field which was imposed on the top DBR of VCSEL by assuming that the two polarization modes were in the same place of the gain spectra in the absence of electric field beginning. By modifying SFM, the affection of the electric field strength on the polarization switching currents between the two polarization modes had been shown.
Resumo:
The theoretical analysis and experimental measurement on the angle dependence of quantum efficiency of GaAs based resonant cavity enhanced (RCE) photodetector is presented. By changing the angle of incoming light, about 40mn wavelength variation of peak quantum efficiency has been experimentally obtained. The peak quantum efficiency and optical bandwidth at different mode corresponding to different angle incidence have been characterized with different absorption dependence on wavelength. The convenient angle tuning of resonant mode will be helpful to relax the strict constraint of RCE photodetector to light source with narrow emission spectrum while especially applied in space optical detections and communications.
Resumo:
Design of the typical laser diode side-pumped Nd:YAG rod system has been discussed using the conventional ray tracing method in this paper. Firstly introduce two basic matrices, refractional and translational matrix, described the transmission of nonparaxial light ray in the medium without concerning the absorption of light. And then, using those matrices, analyze the distribution of pump light in the crystal respectively under the condition of directly pumped system and indirectly pumped system with a cylindrical quartz rod as focusing lens. From the result of simulation, we compare the advantage and disadvantage of the two pumped method, and mainly consider how to select the diameter of the focus lens and cooling tube, indicate the effect of deionized water and cooling tube have on the pump light distribution in the active material. At last, make some conclusions about the side-pumped Nd:YAG laser system.
Resumo:
The stress distribution in silica optical waveguides on silicon is calculated by using finite element method (FEM). The waveguides are mainly subjected to compressive stress along the x direction and the z direction, and it is accumulated near the interfaces between the core and cladding layers. The shift of central wavelength of silica arrayed waveguide grating (AWG) on silicon-substrate with the designed wavelength and the polarization dependence are caused by the stress in the silica waveguides.
Resumo:
Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.
Resumo:
The tunable ridge waveguide distributed Bragg reflector (DBR) lasers designed for wavelength-division-multiplex (WDM) communication systems at 1.55 um by using selective area growth (SAG) is reported. The threshold current of the DBR laser is 62mA and the output power is more than 8mW. The isolation resistance between the active region and the Bragg region is 30K Ohm. The total tuning range is 6.5nm and this DBR laser can provide 6 continuous standard WDM channels with 100GHz channel spacing; in the tuning range, the single mode suppression ratio (SMSR) is maintained more than 32dB and the maximum output power variation is less than 3dB.
Resumo:
We fabricate an electro-absorption modulator for optical network system using a new strategy, the improved modulation properties of the strained InGaAs/InAlAs MQW show it's polarization independent, high extinction ratio (> 40dB) and low capacitance (C <0.6pF) which can achieve an ultra-high frequency(> 10GHz). The device is be used in 10Gbps optical time division multiplex (OTDM) system as a signal generator.
Resumo:
Experimentally observed X-ray reflectivity curves show bi-crystal(twin) characteristics. The study revealed that there was defect segregation at the twin boundary. Stress was relaxed at the edge of the boundary. Relaxation of the stress resulted in formation of twin and other defects. As a result of formation of such defects, a defect-free and stress-free zone or low defect density and small stress zone is created around the defects. So a twin model was proposed to explain the experimental results. Stress(mainly thermal stress), chemical stoichiometry deviation and impurities nonhomogeneous distributions are the key factors that cause twins in LEC InP crystal growth. Twins on (111) face in LEC InP crystal were studied. Experimental evidence of above mentioned twin model and suggestions on how to get twin-free LEC InP single crystals will be discussed.
Resumo:
High quality cubic GaN was grown on Silicon (001) by metalorganic vapor phase epitaxy (MOVPE) using a GaAs nucleation layer grown at low temperature. The influence of various nucleation conditions on the GaN epilayers' quality was investigated. We found that the GaAs nucleation layer grown by atomic layer epitaxy (ALE) could improve the quality of GaN films by depressing the formation of mixed phase. Photoluminescence (PL) and X-ray diffraction were used to characterize the properties of GaN epilayers. High quality GaN epilayers with PL full width at half maximum (FWHM) of 130meV at room temperature and X-ray FWHM of 70 arc-min were obtained by using 10-20nm GaAs nucleation layer grown by ALE.
Resumo:
Low threshold current and high temperature operation of 650nm AlGaInP quantum well laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) are reported in this paper. 650nm laser diodes with threshold current as low as 22-24mA at room temperature, and the operating temperature over 90 degrees C at CW output power 5 mW were achieved in this study. These lasers are stable during 72 hours burn in under 5mW at 90 degrees C.