901 resultados para fast protons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rearrangeable nonblocking 4 x 4 thermooptic silicon-on-insulator waveguide switch matrix at 1.55-mu m integrated spot size converters is designed and fabricated for the first time. The insertion losses and polarization-dependent losses of the four channels are less than 10 and 0.8 dB, respectively. The extinction ratios are larger than 20 dB. The response times are 4.6 mu s for rising edge and 1.9 mu s for failing edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A silicon-on-insulator-based thermo-optic waveguide switch integrated with spot size converters is designed and fabricated by inductively coupled plasma reactive ion etching. The device shows good characteristics, including low, insertion loss of 8 +/- 1 dB for wavelength 1530-1580 nm and fast response times of 4.6 As for rising edge and 1.9 mu s for failing edge. The extinction ratios of the two channels are 19.1 and 18 dB, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low power consumption 2 x 2 thermo-optic switch with fast response was fabricated on silicon-on-insulator by anisotropy chemical etching. Blocking trenches were etched on both sides of the phase-shifting arms to shorten device length and reduce power consumption. Thin top cladding layer was grown to reduce power consumption and switching time. The device showed good characteristics, including a low switching power of 145 mW and a fast switching speed of 8 +/- 1 mus, respectively. Two-dimensional finite element method was applied to simulate temperature field in the phase-shifting arm instead of conventional one-dimensional method. According to the simulated result, a new two-dimensional index distribution of phase-shifting arm was determined. Consequently finite-difference beam propagation method was employed to simulate the light propagation in the switch, and calculate the power consumption as well as the switching speed. The experimental results were in good agreement with the theoretical estimations. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on thermo-optical effect of silicon, a 2 x 2 switch is fabricated in silicon-on-insulator by chemical etching. The switch presents an extinction ratio of 26 dB and a power consumption of 169 mW. The response time F similar to 10.5 mus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a linear-cavity stretched-pulse fibre laser with mode locking by a nonlinear polarization rotation and by semiconductor saturable-absorber mirrors. A Q-switched mode-locking cw train and a mode-locking pulse train are obtained in the experiment. We investigate the effects of the equivalent fast saturable absorber and the slow saturable absorbers in experiment. It is found that neither the nonlinear polarization evolution effect nor a semiconductor saturable absorber mirror is enough to produce the stable cw mode-locking pulses in this experiment. A nonlinear polarization evolution effect controls the cavity loss to literally carve the pulses; semiconductor saturable absorber mirrors provide the self-restarting and maintain the stability of the mode-locking operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes novel fast addition and multiplication circuits that are based on non-binary redundant number systems and single electron (SE) devices. The circuits consist of MOSFET-based single-electron (SE) turnstiles. We use the number of electrons to represent discrete multiple-valued logic states and we finish arithmetic operations by controlling the number of electrons transferred. We construct a compact PD2,3 adder and a 12x12bit multiplier using the PD2,3 adder. The speed of the adder can be as high as 600MHz with 400nW power dissipation. The speed of the adder is regardless of its operand length. The proposed circuits have much smaller transistors than conventional circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a charge-pump based phase-locked loop (CPLL) that can achieve fast locking and tiny deviation is proposed and analyzed. A lock-aid circuit is added to achieve fast locking of the CPLL. Besides, a novel differential charge pump which has good current matching characteristics and a PFD with delay cell has been used in this PLL. The proposed PILL circuit is designed based on the 0.35um 2P4M CMOS process with 3.3V/5V supply voltage. HSPICE simulation shows that the lock time of the proposed CPLL can be reduced by over 72% in comparison to the conventional PILL and its charge pump sink and source current mismatch is only 0.008%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A seven-state phase frequency detector (S.S PFD) is proposed for fast-locking charge pump based phase-locked loops (CPPLLs) in this paper. The locking time of the PLL can be significantly reduced by using the seven-state PFD to inject more current into the loop filter. In this stage, the bandwidth of the PLL is increased or decreased to track the phase difference of the reference signal and the feedback signal. The proposed architecture is realized in a standard 0.35 mu m 2P4M CMOS process with a 3.3V supply voltage. The locking time of the proposed PLL is 1.102 mu s compared with the 2.347 mu s of the PLL based on continuous-time PFD and the 3.298 mu s of the PLL based on the pass-transistor tri-state PFD. There are 53.05% and 66.59% reductions of the locking time. The simulation results and the comparison with other PLLs demonstrate that the proposed seven-state PFD is effective to reduce locking time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a behavior model for PLL Frequency Synthesizer. All the noise sources are modeled with noise voltages or currents in time-domain. An accurate VCO noise model is introduced, including both thermal noise and 1/f noise. The behavioral model can be co-simulated with transistor level circuits with fast speed and provides more accurate phase noise and spurs prediction. Comparison shows that simulation results match very well with measurement results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel architecture of vision chip for fast traffic lane detection (FTLD). The architecture consists of a 32*32 SIMD processing element (PE) array processor and a dual-core RISC processor. The PE array processor performs low-level pixel-parallel image processing at high speed and outputs image features for high-level image processing without I/O bottleneck. The dual-core processor carries out high-level image processing. A parallel fast lane detection algorithm for this architecture is developed. The FPGA system with a CMOS image sensor is used to implement the architecture. Experiment results show that the system can perform the fast traffic lane detection at 50fps rate. It is much faster than previous works and has good robustness that can operate in various intensity of light. The novel architecture of vision chip is able to meet the demand of real-time lane departure warning system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a smart frequency presetting technique for fast lock-in LC-PLL frequency synthesizer. The technique accurately presets the frequency of VCO with small initial frequency error and greatly reduces the lock-in time. It can automatically compensate preset frequency variation with process and temperature. A 2.4GHz synthesizer with 1MHz reference input was implemented in 0.35 mu m CMOS process. The chip core area is 0.4mm(2). Output frequency of VCO ranges from 2390 to 2600MHz. The measured results show that the typical lock-in time is 3 mu s. The phase noise is -112dBc/Hz at 600KHz offset from center frequency. The test chip consumes current of 22mA that includes the consumption of the I/O buffers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing methods for the discrimination of varieties of commodity corn seed are unable to process batch data and speed up identification, and very time consuming and costly. The present paper developed a new approach to the fast discrimination of varieties of commodity corn by means of near infrared spectral data. Firstly, the experiment obtained spectral data of 37 varieties of commodity corn seed with the Fourier transform near infrared spectrometer in the wavenurnber range from 4 000 to 12 000 cm (1). Secondly, the original data were pretreated using statistics method of normalization in order to eliminate noise and improve the efficiency of models. Thirdly, a new way based on sample standard deviation was used to select the characteristic spectral regions, and it can search very different wavenumbers among all wavenumbers and reduce the amount of data in part. Fourthly, principal component analysis (PCA) was used to compress spectral data into several variables, and the cumulate reliabilities of the first ten components were more than 99.98%. Finally, according to the first ten components, recognition models were established based on BPR. For every 25 samples in each variety, 15 samples were randomly selected as the training set. The remaining 10 samples of the same variety were used as the first testing set, and all the 900 samples of the other varieties were used as the second testing set. Calculation results showed that the average correctness recognition rate of the 37 varieties of corn seed was 94.3%. Testing results indicate that the discrimination method had higher precision than the discrimination of various kinds of commodity corn seed. In short, it is feasible to discriminate various varieties of commodity corn seed based on near infrared spectroscopy and BPR.