699 resultados para nanoimprint lithography (NIL)
Resumo:
GaAs (001) substrates are patterned by electron beam lithography and wet chemical etching to control the nucleation of InAs quantum dots (QDs). InAs dots are grown on the stripe-patterned substrates by solid source molecular beam epitaxy, A thick buffer layer is deposited on the strip pattern before the deposition of InAs. To enhance the surface diffusion length of the In atoms, InAs is deposited with low growth rate and low As pressure. The AFM images show that distinct one-dimensionally ordered InAs QDs with homogeneous size distribution are created, and the QDs preferentially nucleate along the trench. With the increasing amount of deposited InAs and the spacing of the trenches, a number of QDs are formed beside the trenches. The distribution of additional QDs is long-range ordered, always along the trenchs rather than across the spacing regions.
Resumo:
We report on the realization and characterization of an ultracompact, low-loss, and broadband corner mirror based on photonic crystals (PCs). By modifying the boundary layers of the PC region, extra losses of 1.1 +/- 0.4 dB per corner mirror are achieved for transverse-electronic polarization for silicon-on-insulator ridge waveguides fabricated by electron beam lithography and inductively coupled plasma etching. Dimensions of the PC corner mirror are less than 7 x 7 mu m(2), which are only about one tenth of conventional waveguide corner mirrors.
Resumo:
A two-dimensional (2D) photonic crystal waveguide in the Gamma-K direction with triangular lattice on a silicon-on insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.
Resumo:
The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials, which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper, we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.
Resumo:
Three-terminal ballistic junctions (TBJs) are fabricated from a high-mobility InP/In0.75Ga0.25As heterostructure by electron-beam lithography. The voltage output from the central branch is measured as a function of the voltages applied to the left and right branches of the TBJs. The measurements show that the TBJs possess an intrinsic nonlinearity. Based on this nonlinearity, a novel room-temperature functional frequency mixer and phase detector are realized. The TBJ frequency mixer and phase detector are expected to have advantages over traditional circuits in terms of simple structure, small size and high speed, and can be used as a new type of building block in nanoelectronics.
Resumo:
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.
Resumo:
An analysis of the enhancement of light transmission through a sub-wavelength aperture by oil- or solid-immersion is presented in this letter. An output power enhancement phenomenon related to the oil-immersion or solid-immersion mechanism is realized experimentally and reported for a very small aperture laser, which is an agreement with simulation analysis. This phenomenon could be useful for future optical data storage, microscopy and lithography.
Resumo:
Two-dimensional photonic crystals in near infrared region were fabricated by using the focused ion beam ( FIB) method and the method of electron-beam lithography (EBL) combined with dry etching. Both methods can fabricate perfect crystals, the method of FIB is simple,the other is more complicated. It is shown that the material with the photonic crystal fabricated by FIB has no fluorescence,on the other hand, the small-lattice photonic crystal made by EBL combined with dry etching can enhance the extraction efficiency two folds, though the photonic crystal has some disorder. The mechanisms of the enhanced-emission and the absence of emission are also discussed.
Resumo:
A high quality (Q) factor microring resonator in silicon-on-insulator rib waveguides was fabricated by electron beam lithography, followed by inductively coupled plasma etching. The waveguide dimensions were scaled down to submicron, for a low bending loss and compactness. Experimentally, the resonator has been realized with a quality factor as high as 21,200, as well as a large extinction ratio 12.5dB at telecommunication wavelength near 1550nm. From the measured results, propagation loss in the rib waveguide is determined as low as 6.900/cm. This high Q microring resonator is expected to lead to high speed optical modulators and bio-sensing devices.
Resumo:
Submicrometer channel and rib waveguides based on SOI (Silicon-On-Insulator) have been designed and fabricated with electron-beam lithography and inductively coupled plasma dry etching. Propagation loss of 8.39dB/mm was measured using the cut-back method. Based on these so-called nanowire waveguides, we have also demonstrated some functional components with small dimensions, including sharp 90 degrees bends with radius of a few micrometers, T-branches, directional couplers and multimode interferometer couplers.
Resumo:
In this paper, combining low deposition rate with proper growth temperature, we have developed a way to prepare very low-density quantum dots (QDs) suited for the study of single OD properties without resorting to submicron lithography. Experiment results demonstrate that InAs desorption is significant during growing the low density QDs. Ripening of InAs QDs is clearly observed during the post-growth annealing. Photoluminescence spectroscopy reveals that the emission wavelength of low density InAs QDs arrives at 1332.4 nm with a GaAs capping layer.
Resumo:
We report on the design and fabrication of a photonic crystal (PC) channel drop filter based on an asymmetric silicon-on-insulator (SOI) slab. The filter is composed of two symmetric stick-shape micro-cavities between two single-line-defect (W1) waveguides in a triangular lattice, and the phase matching condition for the filter to improve the drop efficiency is satisfied by modifying the positions and radii of the air holes around the micro-cavities. A sample is then fabricated by using electron beam lithography (EBL) and inductively coupled plasma (ICP) etching processes. The measured 0 factor of the filter is about 1140, and the drop efficiency is estimated to be 73% +/- 5% by fitting the transmission spectrum.
Resumo:
Characteristics of microring/racetrack resonators, in submicron SOI rib waveguides, have been investigated. The effects of waveguide dimensions, coupler design, roughness, and oxide cladding are considered. Moreover, guided mode, loss and dispersion of such waveguides are analyzed.
Resumo:
A fabrication method of silicon nanostructures is presented. Silicon nanowire, shift-line structure and islands have been successfully fabricated on SOI wafer using e-beam lithography and anisotropic etching technique.
Fabrication and characterization of two-dimensional photonic crystal on silicon by efficient methods
Resumo:
Two-dimensional photonic crystals working in near infrared region are fabricated into silicon-on-insulator wafer by 248-nm deep UV lithography. We present an efficient way to measure the photonic crystal waveguide's light transmission spectra at given polarization states.