858 resultados para Distributed Bragg reflector (DBR) laser diode


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular mismatch is reported.Without the misalignment,coupling efficiency increases with the decreasing of taper length.With the misalignment,this relation is that the coupling efficiency decreases with each kind of offset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 f^m broad-area laser diodes has been measured, and is 2. 5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1. 7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19 % fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel silicon-on-reflector substrate for Si-based resonant-cavity-enhanced photodetectors has been fabricated by using Si-based sol-gel and smart-cut techniques. The Si/SiO2 Bragg reflector is controlled in situ by electron beam evaporation and the thickness can be adjusted to get high reflectivity. The reflectance spectra of the silicon-on-reflector substrate with five pairs of Si/SiO2 reflector have been measured and simulated by transfer matrix model. The reflectivity at operating wavelength is close to 100%. Based on the silicon-on-reflector substrate, SiGe/Si multiple quantum wells resonant-cavity-enhanced photodetectors for 1.3 mu m wavelength have been designed and simulated. Ten-fold enhancement of the quantum efficiency of resonant-cavity-enhanced photodetectors compared with conventional photodetectors is predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low threshold current and high temperature operation of 650nm AlGaInP quantum well laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) are reported in this paper. 650nm laser diodes with threshold current as low as 22-24mA at room temperature, and the operating temperature over 90 degrees C at CW output power 5 mW were achieved in this study. These lasers are stable during 72 hours burn in under 5mW at 90 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High performance uncooled 1.55 mu m InGaAsP/InP strained layer quantum well (SL-QW) lasers grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were reported in this paper. Whole MOCVD over growth method were applied in this work. The threshold currents of 5mA and the highest lasing temperature of 122 degrees C were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single mode 650nm AlGaInP quantum well laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) was reported in this paper. Selected buried rigewaveguid were applied for single mode operation especially for DVD use. The operating temperature over 90 degree at CW output power 5 mW was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

nThermal processing of strained ln(0.2)Ga(0.8)As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It was found that rapid thermal annealing can improve the 77 K photoluminescence efficiency and electron emission from the active layer, due to removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of post-growth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For sensitive optoelectronic components, traditional soldering techniques cannot be used because of their inherent sensitivity to thermal stresses. One such component is the Optoelectronic Butterfly Package which houses a laser diode chip aligned to a fibre-optic cable. Even sub-micron misalignment of the fibre optic and laser diode chip can significantly reduce the performance of the device. The high cost of each unit requires that the number of damaged components, via the laser soldering process, are kept to a minimum. Mathematical modelling is undertaken to better understand the laser soldering process and to optimize operational parameters such as solder paste volume, copper pad dimensions, laser solder times for each joint, laser intensity and absorption coefficient. Validation of the model against experimental data will be completed, and will lead to an optimization of the assembly process, through an iterative modelling cycle. This will ultimately reduce costs, improve the process development time and increase consistency in the laser soldering process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experiment that combines opto-mechanical and electrical measurements for the characterization of a loudspeaker is presented. We describe a very simple laser vibrometer for evaluating the amplitude of the vibration (displacement) of the speaker cone. The setup is essentially a Michelson-type interferometer operated by an inexpensive semiconductor laser (diode laser). It is shown that the simultaneous measurements of three amplitudes (displacement, electrical current, and applied voltage), as functions of the frequency of vibration, allow us to characterize the speaker system. The experiment is easy to perform, and it demonstrates several useful concepts of optics, mechanics, and electricity, allowing, students to gain an intuitive physical insight into the relations between mathematical models and, an actual speaker system. (C) 2003 American Association of Physics Teachers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: In this study, we evaluated the effects of a low-level laser on bone regeneration in rapid maxillary expansion procedures. Methods: Twenty-seven children, aged 8 to 12 years, took part in the experiment, with a mean age of 10.2 years, divided into 2 groups: the laser group (n=14), in which rapid maxillary expansion was performed in conjunction with laser use, and the no-laser group (n=13), with rapid maxillary expansion only. The activation protocol of the expansion screw was 1 full turn on the first day and a half turn daily until achieving overcorrection. The laser type used was a laser diode (TWIN Laser; MMOptics, Sao Carlos, Brazil), according to the following protocol: 780 nm wavelength, 40 mW power, and 10 J/cm(2) density at 10 points located around the midpalatal suture. The application stages were 1 (days 1-5 of activation), 2 (at screw locking, on 3 consecutive days), 3, 4, and 5 (7, 14, and 21 days after stage 2). Occlusal radiographs of the maxilla were taken with the aid of an aluminum scale ruler as a densitometry reference at different times: T1 (initial), T2 (day of locking), T3 (3-5 days after T2), T4 (30 days after T3), and T5 (60 days after T4). The radiographs were digitized and submitted to imaging software (Image Tool; UTHSCSA, San Antonio, Tex) to measure the optic density of the previously selected areas. To perform the statistical test, analysis of covariance was used, with the time for the evaluated stage as the covariable. In all tests, a significance level of 5% (P<0.05) was adopted. Results: From the evaluation of bone density, the results showed that the laser improved the opening of the midpalatal suture and accelerated the bone regeneration process. Conclusions: The low-level laser, associated with rapid maxillary expansion, provided efficient opening of the midpalatal suture and influenced the bone regeneration process of the suture, accelerating healing. (Am J Orthod Dentofacial Orthop 2012;141:444-50)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular beam epitaxy growth of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs) with peak reflectivity centered around 400nm is reported including optical and transmission electron microscopy (TEM) measurements [1]. Good periodicity heterostructures with crack-free surfaces were confirmed, but, also a significant residual optical absorption below the bandgap was measured. The TEM characterization ascribes the origin of this problem to polymorfism and planar defects in the GaN layers and to the existence of an In-rich layer at the InAlN/GaN interfaces. In this work, several TEM based techniques have been combined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to accurately observe the Earth's carbon cycles from space gives scientists an important tool to analyze climate change. Current space-borne Integrated-Path Differential Absorption (IPDA) Iidar concepts have the potential to meet this need. They are mainly based on the pulsed time-offlight principle, in which two high energy pulses of different wavelengths interrogate the atmosphere for its transmission properties and are backscattered by the ground. In this paper, feasibility study results of a Pseudo-Random Single Photon Counting (PRSPC) IPDA lidar are reported. The proposed approach replaces the high energy pulsed source (e.g. a solidstate laser), with a semiconductor laser in CW operation with a similar average power of a few Watts, benefiting from better efficiency and reliability. The auto-correlation property of Pseudo-Random Binary Sequence (PRBS) and temporal shifting of the codes can be utilized to transmit both wavelengths simultaneously, avoiding the beam misalignment problem experienced by pulsed techniques. The envelope signal to noise ratio has been analyzed, and various system parameters have been selected. By restricting the telescopes field-of-view, the dominant noise source of ambient light can be suppressed, and in addition with a low noise single photon counting detector, a retrieval precision of 1.5 ppm over 50 km along-track averaging could be attained. We also describe preliminary experimental results involving a negative feedback Indium Gallium Arsenide (InGaAs) single photon avalanche photodiode and a low power Distributed Feedback laser diode modulated with PRBS driven acoustic optical modulator. The results demonstrate that higher detector saturation count rates will be needed for use in future spacebourne missions but measurement linearity and precision should meet the stringent requirements set out by future Earthobserving missions.