453 resultados para Chaîne invariante p35
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
In this thesis three measurements of top-antitop differential cross section at an energy in the center of mass of 7 TeV will be shown, as a function of the transverse momentum, the mass and the rapidity of the top-antitop system. The analysis has been carried over a data sample of about 5/fb recorded with the ATLAS detector. The events have been selected with a cut based approach in the "one lepton plus jets" channel, where the lepton can be either an electron or a muon. The most relevant backgrounds (multi-jet QCD and W+jets) have been extracted using data driven methods; the others (Z+ jets, diboson and single top) have been simulated with Monte Carlo techniques. The final, background-subtracted, distributions have been corrected, using unfolding methods, for the detector and selection effects. At the end, the results have been compared with the theoretical predictions. The measurements are dominated by the systematic uncertainties and show no relevant deviation from the Standard Model predictions.
Resumo:
The purpose of this doctoral thesis is to prove existence for a mutually catalytic random walk with infinite branching rate on countably many sites. The process is defined as a weak limit of an approximating family of processes. An approximating process is constructed by adding jumps to a deterministic migration on an equidistant time grid. As law of jumps we need to choose the invariant probability measure of the mutually catalytic random walk with a finite branching rate in the recurrent regime. This model was introduced by Dawson and Perkins (1998) and this thesis relies heavily on their work. Due to the properties of this invariant distribution, which is in fact the exit distribution of planar Brownian motion from the first quadrant, it is possible to establish a martingale problem for the weak limit of any convergent sequence of approximating processes. We can prove a duality relation for the solution to the mentioned martingale problem, which goes back to Mytnik (1996) in the case of finite rate branching, and this duality gives rise to weak uniqueness for the solution to the martingale problem. Using standard arguments we can show that this solution is in fact a Feller process and it has the strong Markov property. For the case of only one site we prove that the model we have constructed is the limit of finite rate mutually catalytic branching processes as the branching rate approaches infinity. Therefore, it seems naturalto refer to the above model as an infinite rate branching process. However, a result for convergence on infinitely many sites remains open.
Resumo:
Diese Arbeit besch"aftigt sich mit algebraischen Zyklen auf komplexen abelschen Variet"aten der Dimension 4. Ziel der Arbeit ist ein nicht-triviales Element in $Griff^{3,2}(A^4)$ zu konstruieren. Hier bezeichnet $A^4$ die emph{generische} abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$. Die ersten drei Kapitel sind eine Wiederholung von elementaren Definitionen und Begriffen und daher eine Festlegung der Notation. In diesen erinnern wir an elementare Eigenschaften der von Saito definierten Filtrierungen $F_S$ und $Z$ auf den Chowgruppen (vgl. cite{Sa0} und cite{Sa}). Wir wiederholen auch eine Beziehung zwischen der $F_S$-Filtrierung und der Zerlegung von Beauville der Chowgruppen (vgl. cite{Be2} und cite{DeMu}), welche aus cite{Mu} stammt. Die wichtigsten Begriffe in diesem Teil sind die emph{h"ohere Griffiths' Gruppen} und die emph{infinitesimalen Invarianten h"oherer Ordnung}. Dann besch"aftigen wir uns mit emph{verallgemeinerten Prym-Variet"aten} bez"uglich $(2:1)$ "Uberlagerungen von Kurven. Wir geben ihre Konstruktion und wichtige geometrische Eigenschaften und berechnen den Typ ihrer Polarisierung. Kapitel ref{p-moduli} enth"alt ein Resultat aus cite{BCV} "uber die Dominanz der Abbildung $p(3,2):mathcal R(3,2)longrightarrow mathcal A_4(1,2,2,2)$. Dieses Resultat ist von Relevanz f"ur uns, weil es besagt, dass die generische abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$ eine verallgemeinerte Prym-Variet"at bez"uglich eine $(2:1)$ "Uberlagerung einer Kurve vom Geschlecht $7$ "uber eine Kurve vom Geschlecht $3$ ist. Der zweite Teil der Dissertation ist die eigentliche Arbeit und ist auf folgende Weise strukturiert: Kapitel ref{Deg} enth"alt die Konstruktion der Degeneration von $A^4$. Das bedeutet, dass wir in diesem Kapitel eine Familie $Xlongrightarrow S$ von verallgemeinerten Prym-Variet"aten konstruieren, sodass die klassifizierende Abbildung $Slongrightarrow mathcal A_4(1,2,2,2)$ dominant ist. Desweiteren wird ein relativer Zykel $Y/S$ auf $X/S$ konstruiert zusammen mit einer Untervariet"at $Tsubset S$, sodass wir eine explizite Beschreibung der Einbettung $Yvert _Thookrightarrow Xvert _T$ angeben k"onnen. Das letzte und wichtigste Kapitel enth"ahlt Folgendes: Wir beweisen dass, die emph{ infinitesimale Invariante zweiter Ordnung} $delta _2(alpha)$ von $alpha$ nicht trivial ist. Hier bezeichnet $alpha$ die Komponente von $Y$ in $Ch^3_{(2)}(X/S)$ unter der Beauville-Zerlegung. Damit und mit Hilfe der Ergebnissen aus Kapitel ref{Cohm} k"onnen wir zeigen, dass [ 0neq [alpha ] in Griff ^{3,2}(X/S) . ] Wir k"onnen diese Aussage verfeinern und zeigen (vgl. Theorem ref{a4}) begin{theorem}label{maintheorem} F"ur $sin S$ generisch gilt [ 0neq [alpha _s ]in Griff ^{3,2}(A^4) , ] wobei $A^4$ die generische abelsche Variet"at der Dimension $4$ mit Polarisierung vom Typ $(1,2,2,2)$ ist. end{theorem}
Resumo:
Questa tesi si prefigge lo scopo di dimostrare il teorema di Igusa. Inizia introducendo algebricamente i numeri p-adici e ne dà una rappresentazione grafica. Sviluppa poi un integrale definito dalla misura di Haar, invariante per traslazione e computa alcuni esempi. Utilizza il blow up come strumento per la risoluzione di alcuni integrali ed enuncia un'applicazione del teorema di Hironaka sulla risolubilità delle singolarità. Infine usa questi risultati per dimostrare il teorema di Igusa.
Resumo:
Gliazellen kommen in allen höheren Organismen vor und sind sowohl für die korrekte Entwicklung, als auch für die Funktionalität des adulten Nervensystems unerlässlich. Eine der mannigfachen Funktionen dieses Zelltyps ist die Umhüllung von Axonen im zentralen und peripheren Nervensystem (ZNS und PNS). Um eine vollständige Umhüllung zu gewährleisten, wandern Gliazellen während der Neurogenese zum Teil über enorme Distanzen von ihrem Entstehungsort aus. Dies trifft insbesondere auf die Gliazellen zu, durch deren Membranausläufer die distalen Axonbereiche der peripheren Nerven isoliert werden.rnIn dieser Arbeit wurde die Migration von Gliazellen anhand des Modelorganismus Drosophila untersucht. Ein besonderes Interesse galt dabei der Wanderung einer distinkten Population von Gliazellen, den sogenannten embryonalen Peripheren Gliazellen (ePG). Die ePGs werden überwiegend im sich entwickelnden ventralen Bauchmark geboren und wandern anschließend entlang der peripheren Nerventrakte nach dorsal aus, um diese bis zum Ende der Embryogenese zu umhüllen und dadurch die gliale Blut-Nerv-Schranke zu etablieren. Das Hauptziel dieser Arbeit bestand darin, neue Faktoren bzw. Mechanismen aufzudecken, durch welche die Migration der ePGs reguliert wird. Dazu wurde zunächst der wildtypische Verlauf ihrer Wanderung detailliert analysiert. Es stellte sich heraus, dass in jedem abdominalen Hemisegment eine invariante Anzahl von 12 ePGs von distinkten neuralen Vorläuferzellen generiert wird, die individuelle Identitäten besitzen und mittels molekularer Marker auf Einzelzellebene identifiziert werden können. Basierend auf der charakteristischen Lage der Zellen erfolgte die Etablierung einer neuen, konsistenten Nomenklatur für sämtliche ePGs. Darüber hinaus offenbarten in vivo Migrationsanalysen, dass die Wanderung individueller ePGs stereotyp verläuft und demzufolge weitestgehend prädeterminiert ist. Die genaue Kenntnis der wildtypischen ePG Migration auf Einzelzellebene diente anschließend als Grundlage für detaillierte Mutantenanalysen. Anhand derer konnte für den ebenfalls als molekularen Marker verwendeten Transkriptionsfaktor Castor eine Funktion als zellspezifische Determinante für die korrekte Spezifizierung der ePG6 und ePG8 nachgewiesen werden, dessen Verlust in einem signifikanten Migrationsdefekt dieser beiden ePGs resultiert. Des Weiteren konnte mit Netrin (NetB) der erste diffusible und richtungsweisende Faktor für die Migration von ePGs enthüllt werden, der in Interaktion mit dem Rezeptor Uncoordinated5 speziell die Wanderung der ePG6 und ePG8 leitet. Die von den übrigen Gliazellen unabhängige Navigation der ePG6 und ePG8 belegt, dass zumindest die Migration von Gruppen der ePGs durch unterschiedliche Mechanismen kontrolliert wird, was durch die Resultate der durchgeführten Ablationsexperimente bestätigt wird. rnFerner konnte gezeigt werden, dass während der frühen Gliogenese eine zuvor unbekannte, von Neuroblasten bereitgestellte Netrinquelle an der initialen Wegfindung der Longitudinalen Gliazellen (eine Population Neuropil-assoziierter Gliazellen im ZNS) beteiligt ist. In diesem Kontext erfolgt die Signaldetektion bereits in deren Vorläuferzelle, dem Longitudinalen Glioblasten, zellautonom über den Rezeptor Frazzled. rnFür künftige Mutantenscreens zur Identifizierung weiterer an der Migration der ePGs beteiligter Faktoren stellt die in dieser Arbeit präsentierte detaillierte Beschreibung eine wichtige Grundlage dar. Speziell in Kombination mit den vorgestellten molekularen Markern liefert sie die Voraussetzung dafür, individuelle ePGs auch im mutanten Hintergrund zu erfassen, wodurch selbst subtile Phänotypen überhaupt erst detektiert und auf Einzelzellebene analysiert werden können. Aufgrund der aufgezeigten voneinander unabhängigen Wegfindung, erscheinen Mutantenanalysen ohne derartige Möglichkeiten wenig erfolgversprechend, da Mutationen vermutlich mehrheitlich die Migration einzelner oder weniger ePGs beeinträchtigen. Letzten Endes wird somit die Aussicht verbessert, weitere neuartige Migrationsfaktoren im Modellorganismus Drosophila zu entschlüsseln, die gegebenenfalls bis hin zu höheren Organismen konserviert sind und folglich zum Verständnis der Gliazellwanderung in Vertebraten beitragen.
Resumo:
Nel presente elaborato viene descritta l’attività di tesi da me svolta presso il Laboratorio di Tecnologia Medica presente all’interno dell’Istituto Ortopedico Rizzoli. Nel laboratorio è in corso di svolgimento uno studio mirato a correlare le proprietà meccaniche del tessuto osseo corticale con la qualità e la distribuzione delle fibre di collagene per verificare se tali caratteristiche siano influenzate dal tipo di sollecitazione a cui il tessuto si trova sottoposto fisiologicamente. All’interno di tale studio si inserisce il mio lavoro il cui obiettivo è di progettare ed implementare un protocollo per la caratterizzazione meccanica del tessuto osseo corticale. Il distretto anatomico studiato è il femore prossimale. Infatti è dimostrato come in tale zona il tessuto osseo corticale risulti sollecitato in vivo a compressione in posizione mediale e a trazione in posizione laterale. Per eseguire lo studio è stato deciso di utilizzare una prova di trazione semplice in modo da poter ricavare il contributo del collagene, su provini orientati longitudinalmente all’asse del femore. Nella prima parte del lavoro ho perciò progettato l’esperimento stabilendo la geometria dei provini e la procedura sperimentale necessaria alla loro estrazione. Successivamente ho progettato e realizzato il sistema di applicazione del carico coerentemente con il posizionamento dei sistemi di misura. In particolare per la misura delle deformazioni imposte al provino ho utilizzato sia un sistema meccanico che un sistema ottico basato sulla correlazione digitale di immagine. Quest’ultimo sistema permette di elaborare una mappa degli spostamenti e delle deformazioni su tutta la superficie del provino visibile dalle telecamere, purchè adeguatamente preparata per la misura con sistema ottico. La preparazione prevede la realizzazione di un pattern stocastico ad elevato contrasto sulla superficie. L’analisi dei risultati, oltre a verificare il corretto svolgimento della prova, ha evidenziato come siano presenti differenze significative tra le proprietà meccaniche di ciascun soggetto ad eccezione del tasso di deformazione necessario per imporre al provino una deformazione permanente pari allo 0.2%. Infatti tale parametro risulta invariante. È stato rilevato inoltre come non siano presenti differenze significative tra le proprietà meccaniche del tessuto estratto in zone differenti nonostante sia sollecitato fisiologicamente principalmente con sollecitazioni differenti.
Resumo:
Scopo di questo lavoro di tesi è lo studio di alcune proprietà delle teorie generali della gravità in relazione alla meccanica e la termodinamica dei buchi neri. In particolare, la trattazione che seguirà ha lo scopo di fornire un percorso autoconsistente che conduca alla nozione di entropia di un orizzonte descritta in termini delle carica di Noether associata all'invarianza del funzionale d'azione, che descrive la teoria gravitazionale in considerazione, per trasformazioni di coordinate generali. Si presterà particolare attenzione ad alcune proprietà geometriche della Lagrangiana, proprietà che sono indipendenti dalla particolare forma della teoria che si sta prendendo in considerazione; trattasi cioè non di proprietà dinamiche, legate cioè alla forma delle equazioni del moto del campo gravitazionale, ma piuttosto caratteristiche proprie di qualunque varietà rappresentante uno spaziotempo curvo. Queste caratteristiche fanno sì che ogni teoria generale della gravità possieda alcune grandezze definite localmente sullo spaziotempo, in particolare una corrente di Noether e la carica ad essa associata. La forma esplicita della corrente e della carica dipende invece dalla Lagrangiana che si sceglie di adottare per descrivere il campo gravitazionale. Il lavoro di tesi sarà orientato prima a descrivere come questa corrente di Noether emerge in qualunque teoria della gravità invariante per trasformazioni generali e come essa viene esplicitata nel caso di Lagrangiane particolari, per poi identificare la carica ad essa associata come una grandezza connessa all' entropia di un orizzonte in qualunque teoria generale della gravità.
Resumo:
In dieser Arbeit werden wir ein Modell untersuchen, welches die Ausbreitung einer Infektion beschreibt. Bei diesem Modell werden zunächst Partikel gemäß eines Poissonschen Punktprozesses auf der reellen Achse verteilt. Bis zu einem gewissen Punkt auf der reellen Achse sind alle Partikel von einer Infektion befallen. Während sich nicht infizierte Partikel nicht bewegen, folgen die infizierten Partikel den Pfaden von voneinander unabhängigen Brownschen Bewegungen und verbreitet die Infektion dabei an den Orten, welche sie betreten. Wenn sie dabei auf ein nicht infiziertes Partikel treffen, ist dieses von diesem Moment an auch infiziert und beginnt ebenfalls, dem Pfad einer Brownschen Bewegung zu folgen und die Infektion auszubreiten. Auf diese Art verschiebt sich nun der am weitesten rechts liegende Ort R_t, an dem die Infektion bereits verbreitet wurde. Wir werden mit Hilfe des subadditiven Ergodensatzes zeigen, dass sich dieser Ort mit linearer Geschwindigkeit fortbewegt. Ferner werden wir eine obere und eine untere Schranke für die Ausbreitungsgeschwindkeit angeben. Danach werden wir zeigen, dass der Prozess Regenerationszeiten hat, nämlich solche zufällige Zeiten, zu denen er eine Art Neustart unter speziellen Startbedingungen durchführt. Wir werden diese für eine weitere Charakterisierung der Ausbreitungsgeschwingkeit nutzen. Ferner erhalten wir durch die Regenerationszeiten auch einen Zentralen Grenzwertsatz für R_t und können zeigen, dass die Verteilung der infizierten Partikel aus Sicht des am weitesten rechts liegenden infizierten Ortes gegen eine invariante Verteilung konvergiert.
Resumo:
In this thesis, a systematic analysis of the bar B to X_sgamma photon spectrum in the endpoint region is presented. The endpoint region refers to a kinematic configuration of the final state, in which the photon has a large energy m_b-2E_gamma = O(Lambda_QCD), while the jet has a large energy but small invariant mass. Using methods of soft-collinear effective theory and heavy-quark effective theory, it is shown that the spectrum can be factorized into hard, jet, and soft functions, each encoding the dynamics at a certain scale. The relevant scales in the endpoint region are the heavy-quark mass m_b, the hadronic energy scale Lambda_QCD and an intermediate scale sqrt{Lambda_QCD m_b} associated with the invariant mass of the jet. It is found that the factorization formula contains two different types of contributions, distinguishable by the space-time structure of the underlying diagrams. On the one hand, there are the direct photon contributions which correspond to diagrams with the photon emitted directly from the weak vertex. The resolved photon contributions on the other hand arise at O(1/m_b) whenever the photon couples to light partons. In this work, these contributions will be explicitly defined in terms of convolutions of jet functions with subleading shape functions. While the direct photon contributions can be expressed in terms of a local operator product expansion, when the photon spectrum is integrated over a range larger than the endpoint region, the resolved photon contributions always remain non-local. Thus, they are responsible for a non-perturbative uncertainty on the partonic predictions. In this thesis, the effect of these uncertainties is estimated in two different phenomenological contexts. First, the hadronic uncertainties in the bar B to X_sgamma branching fraction, defined with a cut E_gamma > 1.6 GeV are discussed. It is found, that the resolved photon contributions give rise to an irreducible theory uncertainty of approximately 5 %. As a second application of the formalism, the influence of the long-distance effects on the direct CP asymmetry will be considered. It will be shown that these effects are dominant in the Standard Model and that a range of -0.6 < A_CP^SM < 2.8 % is possible for the asymmetry, if resolved photon contributions are taken into account.
Resumo:
Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.
Resumo:
In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy sqrt{hat{s}}, we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both kinematics. Using these results, we analyze subleading contributions to the total cross section in 1PI and PIM originating from power corrections to the leading terms in the threshold expansions, and compare them to previous approaches. We later combine our PIM and 1PI results for the total cross section, this way eliminating uncertainties due to these corrections. The combined predictions for the total cross section are presented as a function of the top-quark mass in the pole, the minimal-subtraction (MS), and the 1S mass scheme. In addition, we calculate the forward-backward (FB) asymmetry at the Tevatron in the laboratory, and in the ttbar rest frames as a function of the rapidity and the invariant mass of the top-quark pair at NLO+NNLL. We also give binned results for the asymmetry as a function of the invariant mass and the rapidity difference of the ttbar pair, and compare those to recent measurements. As a last application we calculate the charge asymmetry at the LHC as a function of a lower rapidity cut-off for the top and anti-top quarks.
Resumo:
In this thesis we consider systems of finitely many particles moving on paths given by a strong Markov process and undergoing branching and reproduction at random times. The branching rate of a particle, its number of offspring and their spatial distribution are allowed to depend on the particle's position and possibly on the configuration of coexisting particles. In addition there is immigration of new particles, with the rate of immigration and the distribution of immigrants possibly depending on the configuration of pre-existing particles as well. In the first two chapters of this work, we concentrate on the case that the joint motion of particles is governed by a diffusion with interacting components. The resulting process of particle configurations was studied by E. Löcherbach (2002, 2004) and is known as a branching diffusion with immigration (BDI). Chapter 1 contains a detailed introduction of the basic model assumptions, in particular an assumption of ergodicity which guarantees that the BDI process is positive Harris recurrent with finite invariant measure on the configuration space. This object and a closely related quantity, namely the invariant occupation measure on the single-particle space, are investigated in Chapter 2 where we study the problem of the existence of Lebesgue-densities with nice regularity properties. For example, it turns out that the existence of a continuous density for the invariant measure depends on the mechanism by which newborn particles are distributed in space, namely whether branching particles reproduce at their death position or their offspring are distributed according to an absolutely continuous transition kernel. In Chapter 3, we assume that the quantities defining the model depend only on the spatial position but not on the configuration of coexisting particles. In this framework (which was considered by Höpfner and Löcherbach (2005) in the special case that branching particles reproduce at their death position), the particle motions are independent, and we can allow for more general Markov processes instead of diffusions. The resulting configuration process is a branching Markov process in the sense introduced by Ikeda, Nagasawa and Watanabe (1968), complemented by an immigration mechanism. Generalizing results obtained by Höpfner and Löcherbach (2005), we give sufficient conditions for ergodicity in the sense of positive recurrence of the configuration process and finiteness of the invariant occupation measure in the case of general particle motions and offspring distributions.
Resumo:
In this thesis we investigate the phenomenology of supersymmetric particles at hadron colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly construct the SCET Lagrangian for QCD. As an example, we discuss factorization and resummation for the Drell-Yan process in SCET. We use techniques from SCET to improve existing calculations of the production cross sections for slepton-pair production and top-squark-pair production at hadron colliders. As a first application, we implement soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for slepton-pair production in the minimal supersymmetric extension of the Standard Model (MSSM). This approach resums large logarithmic corrections arising from the dynamical enhancement of the partonic threshold region caused by steeply falling parton luminosities. We evaluate the resummed invariant-mass distribution and total cross section for slepton-pair production at the Tevatron and LHC and we match these results, in the threshold region, onto NLO fixed-order calculations. As a second application we present the most precise predictions available for top-squark-pair production total cross sections at the LHC. These results are based on approximate NNLO formulas in fixed-order perturbation theory, which completely determine the coefficients multiplying the singular plus distributions. The analysis of the threshold region is carried out in pair invariant mass (PIM) kinematics and in single-particle inclusive (1PI) kinematics. We then match our results in the threshold region onto the exact fixed-order NLO results and perform a detailed numerical analysis of the total cross section.
Resumo:
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.