Moduli spaces of (G,h)-constellations


Autoria(s): Becker, Tanja
Data(s)

2011

Resumo

Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.

Für eine reduktive Gruppe G, die auf einem affinen C-Schema X wirkt, und eine Hilbertfunktion h: Irr G → N_0 konstruieren wir den Modulraum M_Ө(X) der Ө-stabilen (G,h)-Konstellationen auf X, der eine gemeinsame Verallgemeinerung des invarianten Hilbertschemas nach Alexeev und Brion und des von Craw und Ishii eingeführten Modulraumes von Ө-stabilen G-Konstellationen für endliche Gruppen G ist. Unsere Konstruktion eines Morphismus M_Ө(X) → X//G macht diesen Modulraum zu einem Kandidaten einer Auflösung der Singularitäten des Quotienten X//G. Außerdem bestimmen wir das invariante Hilbertschema der Nullfaser der Impulsabbildung einer Wirkung von Sl_2 auf (C²)⁶ als eines der ersten Beispiele von invarianten Hilbertschemata mit Multiplizitäten. Dabei beschreiben wir eine allgemeine Vorgehensweise für derartige Berechnungen. Ferner zeigen wir, dass unser Hilbertschema glatt und zusammenhängend ist und daher eine Auflösung der Singularitäten der symplektischen Reduktion der Wirkung darstellt.

Formato

application/pdf

Identificador

urn:nbn:de:hebis:77-29194

http://ubm.opus.hbz-nrw.de/volltexte/2011/2919/

Idioma(s)

eng

Publicador

08: Physik, Mathematik und Informatik. 08: Physik, Mathematik und Informatik

Direitos

http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php

Palavras-Chave #Modulräume von Garben, Invariante Hilbertschemata, Auflösungen von Singularitäten, Geometrische Invariantentheorie #Moduli spaces of sheaves, Invariant Hilbert schemes, Resolutions of singularities, Geometric Invariant Theory #Mathematics
Tipo

Thesis.Doctoral