981 resultados para JUNCTION DIODES
Resumo:
Broadband superluminescent diodes are fabricated by using InAs/GaAs self-assembled quantum dots as an active region. The devices exhibited properties of 110 run bandwidth with the centre of 1.1 mu m and above 30 mW output under pulse injection at room temperature.
Resumo:
The Principle of optical thin film was used to calculate the feasibility of improving the light extraction efficiency of GaN/GaAs optical devices by wafer-bonding technique. The calculated results show that the light extraction efficiency of bonded samples can be improved by 2.66 times than the as-grown GaN/GaAs samples when a thin Ni layer was used as adhesive layer and Ag layer as reflective layer. Full reflectance spectrum comparison shows that reflectivity for the incident light of 459.2 nm of the bonded samples was improved by 2.4 times than the as-grown samples, which is consistent with the calculated results.
Resumo:
We have proposed a new superluminescent diodes (SLD) aimed at wide spectrum-quantum dot superluminescent diodes (QD-SLD), which is characterized by the introduction of a self-assembled asymmetric quantum dot pairs active region into conventional SLID structure. We investigated the structure and optical properties of a bilayer sample with different InAs deposition amounts in the first and second layer. We find that the structure of a self-assembled asymmetric quantum dot pairs can operate up to a 150 nm spectral width. In addition, as the first QDs' density can modulate the density of the QDs on the second layer, due to relatively high QDs density of the first layer, we can get the strong PL intensity from a broad range. We think that for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for QW-SLD. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An accurate and simple technique for measuring the input reflection coefficient and the frequency response of semiconductor laser diode chips is proposed and demonstrated. All the packaging parasitics could be obtained accurately using a calibrated probe, and the impedance of the intrinsic diode chip is deduced from the directly measured reflection coefficient. The directly measured impedance of a laser diode is affected strongly by the short bond wire. In the frequency response (S(2)1) measurements of semiconductor laser diode chips, the test fixture consists of a microwave probe, a submount, and a bond wire. The S-parameters of the probe could be determined using the short-open-match (SOM) method. Both the attenuation and the reflection of the test fixture have a strong influence on the directly measured frequency response, and in our proposed technique, the effect of test fixture is completely removed.
Resumo:
Thermal processing of strained In0.2Ga0.8As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It is found that rapid thermal annealing can improve the 77K photoluminescence efficiency and electron emission from the active layer, due to the removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of postgrowth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.
Resumo:
Gallium nitride (GaN)-based Schottky junctions were fabricated by RF-plasma-assisted molecular beam epitaxy (MBE). The GaN epitaxial layers were deposited on novel double buffer layers that consist of a conventional low-temperature buffer layer (LTBL) grown at 500 degreesC and an intermediate-temperature buffer layer (ITBL) deposited at 690 degreesC. Low-frequency excess noise and deep level transient Fourier spectroscopy (DLTFS) were measured from the devices. The results demonstrate a significant reduction in the density of deep levels in the devices fabricated with the GaN films grown with an ITBL. Compared to the control sample, which was grown with just a conventional LTBL, a three-order-of-magnitude reduction in the deep levels 0.4 eV below the conduction band minimum (Ec) is observed in the bulk of the thin films using DLTFS measurements.
Resumo:
Tunnel-regenerated multiple-active-region (TRMAR) light-emitting diodes (LEDs) with high quantum efficiency and high brightness have been proposed and fabricated. We have proved experimentally that the efficiency of the electrical luminescence and the on-axis luminous intensity of such TRMAR LEDs scaled linearly approximately with the number of the active regions. The on-axis luminous intensity of such TRMAR LEDs with only 3 mum GaP current spreading layer have exceeded 5 cd at 20 mA dc operation under 15 degrees package. The high-quantum-efficiency and high-brightness LEDs under the low injection level were realized. (C) 2001 American Institute of Physics.
Resumo:
A surface-region-purification-induced p-n junction, a puzzle discovered at Brookhaven National Laboratory, in a silicon-on-defect-layer (SODL) material has been explored by carrying out various annealing conditions and subsequent measurements on electrical properties. The origin of the pn junction has been experimentally investigated. Furthermore, the p-n junction has been transformed into a p-i-n electrical structure by adding a high temperature annealing process to the previously used SODL procedure, making the SODL material approach silicon on insulator (SOI). The control of the initial oxygen amount in the silicon material is suggested to be critical for the experimental results.
Resumo:
Proton-implanted and annealed p-type Si wafers were investigated by using both transmission electron microscopy and spreading resistivity probe. The novel pn junction [Li et al., Mat. Res. Sec. Symp, Proc. 396 (1996) 745], as obtained by using n-type Si subjected to the process as this work, was not observed in the p-type Si wafers in this work. A drop of superficial resistivity in the sample was found and is explained by the proposed models interpreting the novel pn junction. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The feasibility of growing device-quality cubic GaN/GaAs(001) films by metal organic chemical vapor deposition has been demonstrated. The optical quality of the GaN films was characterized by room-temperature photoluminescence measurements, which shows a full width at half maximum of 46 meV. The structural quality of the films was investigated by transmission electron microscopy. There are submicron-size grains free from threading dislocations and stacking faults. More importantly, a cubic-phase GaN blue light-emitting diode has been fabricated. The device process, which is very simple and compatible with current GaAs technology, indicates a promising future for the blue light-emitting diode. (C) 1999 American Institute of Physics. [S0003-6951(99)01416-3].
Resumo:
A novel idea of InAlAs native oxide utilized to replace the p-n-p-n thyristor blocking layer and improve the high-temperature performance of buried heterostructure InGaAsP-InP laser is first proposed and demonstrated. A characteristic temperature (T-0) of 50 K is achieved from an InA1As native oxide buried heterostructure (NOBH) InGaAsP-InP multiquantum-well laser with 1.5-mu m-wide diode leakage passage path. The threshold current and slope efficiency of NOBH laser changes from 5.6 mA, 0.23 mW/mA to 28 mA, 0.11 mW/mA with the operating temperature changing from 20 degrees C to 100 degrees C. It is comparable to conventional p-n reverse biased junction BH laser with minimized diode leakage current, and is much better than the buried ridge strip with proton implanted laterally confinement laser.
Resumo:
An InAlAs native oxide is used to replace the p-n reverse-biased junction in a conventional buried heterostructure InP-based laser. This technique reduces the number of regrowth steps and eliminates leakage current under high-temperature operation. The InAlAs native oxide buried heterostructure (NOBH) laser with strain-compensated InGaAsP/InP multiple quantum well active layers has a threshold current of 5.6 mA, a slope efficiency of 0.23 mW/mA, and a linear power up to 22.5 mW with a HR-coated facet. It exhibits single transverse mode with lasing wavelength at 1.532 mu m. A characteristic temperature (T-0) of 50 K is obtained from the NOBH laser with a nonoptimized oxide layer width. (C) 1998 American Institute of Physics. [S0003-6951(98)01352-7].
Resumo:
The growth of wurtzite GaN by low-pressure metalorganic vapor-phase epitaxy on (1 1 1) magnesium aluminate (MgAl2O4) substrates have been studied. The morphological, crystalline, electrical and optical properties are investigated. A p-n junction GaN LED was fabricated on the MgAl2O4 substrate. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
An effective approach to enhance the light output power of InGaN/GaN light emitting diodes (LED) was proposed using pyramidal patterned sapphire substrates (PSS). The sapphire substrates were patterned by a selective chemical wet etching technique. GaN-based LEDs were fabricated on patterned sapphire substrates through metal organic chemical deposition (MOCVD). The LEDs fabricated on patterned sapphire substrates exhibit excellent device performance compared to the conventional LEDs fabricated on planar sapphire substrates in the case of the same growth and device fabricating conditions. The light output power of the LEDs fabricated on patterned sapphire substrates was about 37% higher than that of LEDs on planar sapphire substrates at an injection current of 20 mA. The significant enhancement is attributable to the improvement of the quality of GaN-based epilayers and improvement of the light extraction efficiency by patterned sapphire substrates.