934 resultados para CHAOTIC CIRCUIT
Resumo:
An optical receiver front-end for SONET OC-96 receivers was analyzed and designed in 0.18 mu m CMOS process. It consists of a transimpedance amplifier (TIA) and a limiting amplifier (LA). The TIA takes a fully differential configuration, and regulated cascode (RGC) input stage is implemented. The LA was realized by five cascaded identical gain stages with active inductor load. The TIA achieved 4.2GHz bandwidth for 0.5pF photodiode (PD) capacitance and 1.2k 0 transimpedance gain. The LA achieved 5.4GHz bandwidth and 29dB voltage gain. The optical sensitivity is -19dBm at 5-Gb/s for a bit-error rate of 10(-12), and it dissipates 45.5mW for I.8V supply.
Resumo:
This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.
Resumo:
As a solution of accurate simulation of the body effect in PD SOI analogue circuit, a simulation model of distributed body contact resistance and parasitical capacitance is presented. Based on this model, we have designed and simulated a sense amplifier that applied to V a 0.8um PD SOI 64K SRAM.
Resumo:
A novel CMOS-based preamplifier for amplifying brain neural signal obtained by scalp electrodes in brain-computer interface (BCI) is presented in this paper. By means of constructing effective equivalent input circuit structure of the preamplifier, two capacitors of 5 pF are included to realize the DC suppression compared to conventional preamplifiers. Then this preamplifier is designed and simulated using the standard 0.6 mu m MOS process technology model parameters with a supply voltage of 5 volts. With differential input structures adopted, simulation results of the preamplifier show that the input impedance amounts to more than 2 Gohm with brain neural signal frequency of 0.5 Hz-100 Hz. The equivalent input noise voltage is 18 nV/Hz(1/2). The common mode rejection ratio (CMRR) of 112 dB and the open-loop differential gain of 90 dB are achieved.
Resumo:
Chaotic behavior of closed loop pulsating heat pipes (PHPs) was studied. The PHPs were fabricated by capillary tubes with outer and inner diameters of 2.0 and 1.20 mm. FC-72 and deionized water were used as the working fluids. Experiments cover the following data ranges: number of turns of 4, 6, and 9, inclination angles from 5 degrees (near horizontal) to 90, (vertical), charge ratios from 50% to 80%, heating powers from 7.5 to 60.0 W. The nonlinear analysis is based on the recorded time series of temperatures on the evaporation, adiabatic, and condensation sections. The present study confirms that PHPs are deterministic chaotic systems. Autocorrelation functions (ACF) are decreased versus time, indicating prediction ability of the system is finite. Three typical attractor patterns are identified. Hurst exponents are very high, i.e., from 0.85 to 0.95, indicating very strong persistent properties of PHPs. Curves of correlation integral versus radius of hypersphere indicate two linear sections for water PHPs, corresponding to both high frequency, low amplitude, and low frequency, large amplitude oscillations. At small inclination angles near horizontal, correlation dimensions are not uniform at different turns of PHPs. The non-uniformity of correlation dimensions is significantly improved with increases in inclination angles. Effect of inclination angles on the chaotic parameters is complex for FC-72 PHPs, but it is certain that correlation dimensions and Kolmogorov entropies are increased with increases in inclination angles. The optimal charge ratios are about 60-70%, at which correlation dimensions and Kolmogorov entropies are high. The higher the heating power, the larger the correlation dimensions and Kolmogorov entropies are. For most runs, large correlation dimensions and Kolmogorov entropies correspond to small thermal resistances, i.e., better thermal performance, except for FC-72 PHPs at small inclination angles of theta < 15 degrees.
Resumo:
A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm~2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.
Resumo:
A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaAs substrate. The RTD has a room temperature peak-to-valley ratio of 5.2:1 with a peak current density of 22.5kA/cm~2. The HEMT has a 1μm gate length with a-1V threshold voltage. A logic circuit called a monostableto-bistable transition logic element (MOBILE) circuit is developed. The experimental result confirms that the fabricated logic circuit operates successfully with frequency operations of up to 2GHz.
Resumo:
A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.
Resumo:
With the principles of microwave circuits and semiconductor device physics, two microwave power device test circuits combined with a test fixture are designed and simulated, whose properties are evaluated by a parameter network analyzer within the frequency range from 3 to 8GHz. The simulation and experimental results verify that the test circuit with a radial stub is better than that without. As an example, a C-band AlGaN/GaN HEMT microwave power device is tested with the designed circuit and fixture. With a 5.4GHz microwave input signal, the maximum gain is 8.75dB, and the maximum output power is 33.2dBm.
Resumo:
The influence of the heaters on the reliability of the thermo-optic (TO) switch matrix is analyzed and an improved driving circuit based on the analyzed results is designed and fabricated. The circuit can improve the reliability of the switch matrix device from 78.87% to 97.04% for a 4×4 optical switch device with a simplified tree structure. The simulation and experimental results show the circuit can provide suitable driving current for TO switch matrix.
Resumo:
Small signal equivalent circuit model and modulation properties of vertical cavity-surface emitting lasers (VCSEL's) are presented. The modulation properties both in analytic-equation calculation and in circuit model simulation are studied. The analytic-equation calculation of the modulation properties is calculated by using Mathcad program and the circuit model simulation is simulation is simulated by using Pspice program respectively. The results of calculation and the simulation are in good agreement with each other. Experiment is performed to testify the circuit model.
Resumo:
于2010-11-23批量导入