927 resultados para High-speed cavity preparation
Resumo:
In this paper, we presents the characterization technique of high-speed optoelectronics devices based electrical and optical spectra, which is as important access to the devices performance as the prevalent vector network analyzer (VNA) sweeping method. The measurement of additional modulation of laser and frequency response of photodetector from electrical spectra, and the estimation of the modulation indexes and the chirp parameters of directly modulated lasers based on optical spectra analysis, are given as examples.
Resumo:
Various high-speed laser modules are fabricated by TO-Packaged processes, such as FP laser modules, DFB laser modules, and VCSEL modules. Furthermore,, the resonance among the circuit elements provides an approach to compensating the TO packaging parasitics, and improving the frequency response of the devices. The detailed equivalent circuit model is established to investigate both the laser diode and packaging comprehensively. The small-signal modulation bandwidths of the TO packaged FP laser, DFB laser and the VCSEL modules are more than 10, 9.7 and 8 GHz, respectively.
Resumo:
The novel design of a silicon optical switch on the mechanism of a reverse p-n junction is proposed. The figuration of contact regions at slab waveguides and the ion implantation technology for creation of junctions are employed in the new design. The two-layer rib structure is helpful for reduction of optical absorption losses induced by metal and heavily-doped contact. And more, simulation results show that the index modulation efficiency of Mach-Zehnder interferometer enhances as the concentrations of dopants in junctions increase, while the trade-off of absorption loss is less than 3 dB/mu m. The phase shift reaches about 5 x 10(-4) pi/mu m at a reverse bias of 10V with the response time of about 0.2ns. The preliminary experimental results are presented. The frequency bandwidth of modulation operation can arrive in the range of GHz. However, heavily-doped contacts have an important effect on pulse response of these switches. While the contact region is not heavily-doped, that means metal electrodes have schottky contacts with p-n junctions, the operation bandwidth of the switch is limited to about 1GHz. For faster response, the heavily-doped contacts must be considered in the design.
Resumo:
This paper describes a 12-bit 300 MHz CMOS DAC for high-speed system applications. The proposed DAC consists of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs. In order to ensure the linearity of DAC, a double Centro symmetric current matrix is designed by using the Q(2) random walk strategy. To minimize the feedthrough and improve the dynamic performance, the drain of the switching transistors is isolated from the output lines by adding two cascoded transistors.
Resumo:
zhangdi于2010-03-29批量导入
Resumo:
This paper presents measurement methods for determining the reflection coefficients and frequency responses of semiconductor laser diodes, photodiodes, and EA modulator chips. A novel method for determining the intrinsic frequency responses of laser diodes is also proposed, and applications of the developed measurement methods are discussed. We demonstrate the compensation of bonding wire on the capacitances of both the submount and the laser diode, and present a method for estimating the potential modulation bandwidth of TO packaging technique. Initial study on removing the effects of test fixture on large-signal performances of optoelectronic devices at high data rate is also given.
Resumo:
Ge-on-silicon-on-insulator p-i-n photodetectors were fabricated using an ultralow-temperature Ge buffer by ultrahigh-vacuum chemical vapor deposition. For a detector of 70-mu m diameter, the 1-dB small-signal compression power was about 110.5 mW. The 3-dB bandwidth at 3-V reverse bias was 13.4 GHz.
Resumo:
This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place of the ROM look-up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS.The design procedure for implementing the nonlinear DAC is presented. To ensure high speed, current mode logic (CML) is used. The chip is implemented in Chartered 0.35μm COMS technology with active area of 2.0 × 2.5 mm~2 and total power consumption of 400 mW at a single 3.3 V supply voltage. The maximum operating frequency is 850 MHz at room temperature and 1.0 GHz at 0 ℃.
Resumo:
Silicon-based high-speed electro-optical modulator is the key component of silicon photonics for future communiction and interconnection systems. In this paper, introduced are the optical mudulation mechanisms in silicon, reviewed are some recent progresses in high-speed silicon modulators, and analyzed are advantages and shortages of the silicon modulators of different types.
Resumo:
The design and fabrication of a high speed, 12-channel monolithic integrated CMOS optoelectronic integrated circuit(OEIC) receiver are reported.Each channel of the receiver consists of a photodetector,a transimpedance amplifier,and a post-amplifier.The double photodiode structure speeds up the receiver but hinders responsivity.The adoption of active inductors in the TIA circuit extends the-3dB bandwidth to a higher level.The receiver has been realized in a CSMC 0.6μm standard CMOS process.The measured results show that a single channel of the receiver is able to work at bit rates of 0.8~1.4Gb/s. Altogether, the 12-channel OEIC receiver chip can be operated at 15Gb/s.
Resumo:
A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.
Resumo:
In this paper, we present simulation results of an electrooptical variable optical attenuator (VOA) inte-grated in silicon-on-insulator waveguide. The device is functionally based on free carriers absorption toachieve attenuation. Beam propagation method (BPM) and two-dimensional semiconductor device simu-lation tool PISCES-Ⅱ were used to analyze the dc and transient characteristics of the device. The devicehas a response time (including rise time and fall time) less than 200 ns, much faster than the thermoopticand micro-electromechanical systems (MEMSs) based VOAs.
Resumo:
High speed reliable 1.55 mum AlGaInAs multi-quantum well ridge waveguide (RW) DFB laser is developed with a 9GHz -3dB bandwidth. A high speed self aligned constricted mesa 1.55 mum DFB laser is achieved with a 9.1GHz -3dB bandwidth and a more than 20mW output power. A cost effective single RW electroabsorption modulated DFB laser (EMLs) is proposed and successfully fabricated by adopting selective area growth techniques:. a penalty free transmission at 2.5Gbps over 280Km normal G.652 single mode fiber is realized by using this EML as light source. For achieving a better performance EMLs. a gain-coupled DFB laser with etched quantum wells is successfully integrated with a electroabsorption modulator (EAM) for a high single mode yield. the wavelength of a EML is tuned in a 3.2nm range by a integrated thin-film heater for the wavelength routing. a buried heterostructure DFB laser is also successfully integrated with a RW EAM for a lower threshold current. lower EAM parasitic capacitance and higher output power.