992 resultados para molecular beam epitaxy (MBE)
Resumo:
GaAs films made by molecular beam epitaxy with thicknesses ranging from 0.9 to 1.25-mu-m on Si have been implanted with Si ions at 1.2 MeV to dose of 1 x 10(15)/cm2. A rapid infrared thermal annealing and white light annealing were then used for recrystallization. Crystalline quality was analysed by using backscattering channeling technique with Li ion beam of 4.2 MeV. The experimental results show that energy selection is important for obtaining better and uniform recrystallized GaAs epilayers.
Resumo:
Side bands due to purely composition and combined composition-strain modulation in plan-view specimens of a nominally Ge0.5Si0.5(5nm)/Si(25nm) superlattice have been obtained by large-angle convergent-beam electron diffraction. The intensities of the side bands have been calculated from a periodic tension-compression model of the superlattice bilayer using the kinematical theory of electron diffraction. Accurate values of elastic strains in the bilayer and of the Ge content can be obtained in this way.
Resumo:
Capacitance-voltage, photoluminescence (PL), and deep level transient spectroscopy techniques were used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular beam epitaxy. The integrated intensity of the PL spectra obtained from Al-doped ZnS0.977Te0.023 is lower than that of undoped ZnS0.977Te0.023, indicating that some of the Al atoms form nonradiative deep traps. Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x=0, 0.017, 0.04, and 0.046, respectively) epilayers reveal that Al doping leads to the formation of two electron traps 0.21 and 0.39 eV below the conduction band. DLTFS results suggest that in addition to the roles of Te as a component of the alloy as well as isoelectronic centers, Te is also involved in the formation of an electron trap, whose energy level with respect to the conduction band decreases as Te composition increases. Our results show that only a small fraction of Al atoms forms nonradiative deep defects, indicating clearly that Al is indeed a very good donor impurity for ZnS1-xTex epilayers in the range of Te composition being studied in this work. (C) 1997 American Institute of Physics. [S0021-8979(97)08421-1].
Resumo:
The Raman and photoreflectivity spectra of gallium nitride (GaN) films grown on (0001) oriented sapphire substrates by gas source molecular beam epitaxy (GSMBE) have been investigated. The Raman spectra showed the presence of the E-2(high) mode and a shift in the wavenumber of this mode with respect to the GaN epilayer thickness. The Raman scattering results suggest the presence of stress due to lattice and thermal expansion misfit in the films, and also indicate that the buffer layer play an important role in the deposition of high quality GaN layers. The residual stress changes from tensile to compressive as the epilayer thickness increases. Samples subjected to anneal cycles showed an increase in the mobility due probably to stress relaxation as suggested by an observed shift in the E-2(high) mode in the Raman spectra after annealing.
Resumo:
The damage removal and strain relaxation in the As+-implanted Si0.57Ge0.43 epilayers were studied by double-crystal x-ray diffractometry and transmission electron microscopy. The results presented in this paper indicate that rapid thermal annealing at temperatures higher than 950 degrees C results in complete removal of irradiation damage accompained by the formation of GeAs precipitates which enhance the removal process of dislocations.
Resumo:
Properties of GaAs single crystals grown at low temperatures by molecular beam epitaxy (LTMBE GaAs) have been studied. The results shaw that excessive arsenic atoms of about 10(20) cm(-3) exist in LTMBE GaAs in the form of arsenic interstitial couples, and cause the dilation in lattice parameter of LTMBE GaAs, The arsenic interstitial couples will be decomposed, and the excessive arsenic atoms will precipitate during the annealing above 300 degrees C. Arsenic precipitates accumulate in the junctions of epilayers with the increase in the temperature of annealing. The depletion regions caused by arsenic precipitates overlap each other in LTMBE GaAs, taking on the character of high resistivity, and the effects of backgating or sidegating are effectively restrained.
Resumo:
In AlGaAs/InGaAs/GaAs PM-HEMT structures, the characterization of deep centers, the degradation in electrical and optical properties and their effects on electrical performance of the PM-HEMTs have been investigated by DLTS, SIMS, PL and conventional van der Pauw techniques. The experimental results confirm that the deep level centers correlate strongly with the oxygen content in the AlGaAs layer, the PL response of PM-HEMTs, and the electrical performance of the PM-HEMTs. Hydrogen plasma treatment was used to passivate/annihilate these centers, and the effects of hydrogenation were examined.
Resumo:
The structural properties of GaAs grown at low temperatures by molecular beam epitaxy (LTMBE GaAs) were studied. The excess arsenic atoms in LTMBE GaAs exist in the form of arsenic interstitial couples (i,e, two ns atoms share the one host site), and cause an increase in the lattice parameter of LTMBE GaAs. Annealing at above 300 degrees C, the arsenic interstitial couples decomposed, and As precipitates formed, resulting in a decrease in the lattice parameter.
Resumo:
中科院基金,国家自然科学基金,国家攀登计划
Resumo:
国家自然科学基金,国家攀登计划
Resumo:
集成光电子学国家重点实验室基金,国家863计划,国家自然科学基金,中科院项目
Resumo:
于2010-11-23批量导入