20 resultados para high-intensity femtosecond laser pulse

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decades magnetic circular dichroism (MCD) has attracted much interest and evolved into various experimental methods for the investigation of magnetic thin films. For example, synchrotron-based X-ray magnetic circular dichroism (XMCD) displays the absolute values of spin and orbital magnetic moments. It thereby benefits from large asymmetry values of more than 30% due to the excitation of atomic core-levels. Similarly large values are also expected for threshold photoemission magnetic circular dichroism (TPMCD). Using lasers with photon energies in the range of the sample work function this method gives access to the occupied electronic structure close to the Fermi level. However, except for the case of Ni(001) there exist only few studies on TPMCD moreover revealing much smaller asymmetries than XMCD-measurements. Also the basic physical mechanisms of TPMCD are not satisfactorily understood. In this work we therefore investigate TPMCD in one- and two-photon photoemission (1PPE and 2PPE) for ferromagnetic Heusler alloys and ultrathin Co films using ultrashort pulsed laser light. The observed dichroism is explained by a non-conventional photoemission model using spin-resolved band-structure calculations and linear response theory. For the two Heusler alloys Ni2MnGa and Co2FeSi we give first evidence of TPMCD in the regime of two-photon photoemission. Systematic investigations concerning general properties of TPMCD in 1PPE and 2PPE are carried out at ultrathin Co films grown on Pt(111). Here, photon-energy dependent measurements reveal asymmetries of 1.9% in 1PPE and 11.7% in 2PPE. TPMCD measurements at decreased work function even yield larger asymmetries of 6.2% (1PPE) and 17% (2PPE), respectively. This demonstrates that enlarged asymmetries are also attainable for the TPMCD effect on Co(111). Furthermore, we find that the TPMCD asymmetry is bulk-sensitive for 1PPE and 2PPE. This means that the basic mechanism leading to the observed dichroism must be connected to Co bulk properties; surface effects do not play a crucial role. Finally, the enhanced TPMCD asymmetries in 2PPE compared to the 1PPE case are traced back to the dominant influence of the first excitation step and the existence of a real intermediate state. The observed TPMCD asymmetries cannot be interpreted by conventional photoemission theory which only considers direct interband transitions in the direction of observation (Γ-L). For Co(111), these transitions lead to evanescent final states. The excitation to such states, however, is incompatible with the measured bulk-sensitivity of the asymmetry. Therefore, we generalize this model by proposing the TPMCD signal to arise mostly from direct interband transitions in crystallographic directions other than (Γ-L). The necessary additional momentum transfer to the excited electrons is most probably provided by electron-phonon or -magnon scattering processes. Corresponding calculations on the basis of this model are in reasonable agreement with the experimental results so that this approach represents a promising tool for a quantitative description of the TPMCD effect. The present findings encourage an implementation of our experimental technique to time- and spatially-resolved photoemission electron microscopy, thereby enabling a real time imaging of magnetization dynamics of single excited states in a ferromagnetic material on a femtosecond timescale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Aerosolmassenspektrometer SPLAT (Single Particle Laser Ablation Time-of-Flight Mass Spectrometer) ist in der Lage, die Größe einzelner Aerosolpartikel in einem Größenbereich von 0,3 µm bis 3 µm zu bestimmen und gleichzeitig chemisch zu analysieren. Die Größenbestimmung erfolgt durch Streulichtmessung und Bestimmung der Flugzeit der Partikel zwischen zwei kontinuierlichen Laserstrahlen. Durch Kalibrationsmessungen kann auf den aerodynamischen Durchmesser der Partikel geschlossen werden. Kurzzeitig nach der Streulichtdetektion werden die Partikel durch einen hochenergetischen gepulsten UV-Laser verdampft und ionisiert. Die Flugzeit der Partikel zwischen den kontinuierlichen Laserstrahlen wird dazu benutzt, die Ankunftszeit der Partikel in der Ionenquelle zu berechnen und den UV-Laserpuls zu zünden. Die entstandenen Ionen werden in einem bipolaren Flugzeitmassen¬spektrometer nachgewiesen. Durch die Laserablation/Ionisation ist das SPLAT in der Lage, auch schwer verdampfbare Komponenten des atmosphärischen Aerosols - wie etwa Minerale oder Metalle - nachzuweisen. Das SPLAT wurde während dieser Arbeit vollständig neu entwickelt und aufgebaut. Dazu gehörten das Vakuum- und Einlasssystem, die Partikeldetektion, die Ionenquelle und das Massen-spektrometer. Beim Design des SPLAT wurde vor allem auf den späteren Feldeinsatz Wert gelegt, was besondere Anforderungen an Mechanik und Elektronik stellte. Die Charakterisierung der einzelnen Komponenten sowie des gesamten Instruments wurde unter Laborbedingungen durchgeführt. Dabei wurde u.a. Detektionseffizienzen des Instruments ermittelt, die abhängig von der Größe der Partikel sind. Bei sphärischen Partikeln mit einem Durchmesser von 600 nm wurden ca. 2 % der Partikel die in das Instrument gelangten, detektiert und chemisch analysiert. Die Fähigkeit zum Feldeinsatz hat das SPLAT im Februar/März 2006 während einer internationalen Messkampagne auf dem Jungfraujoch in der Schweiz bewiesen. Auf dieser hochalpinen Forschungsstation in einer Höhe von ca. 3580 m fand das SPLAT mineralische und metallische Komponenten in den Aerosolpartikeln. Das SPLAT ist ein vielfältig einsetzbares Instrument und erlaubt vor allem in Kombination mit Aerosolmassenspektrometern, die mit thermischer Verdampfung und Elektronenstoßionisation arbeiten, einen Erkenntnisgewinn in der Analytik atmosphärischer Aerosolpartikel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Erzeugung von Elektronenstrahlen hoher Intensität (I$geq$2,mA) und hoher Spinpolarisation (P$geq$85%) ist für die Experimente an den geplanten glqq Linac Ringgrqq Electron--Ion--Collidern (z.B. eRHIC am Brookhaven National Laboratory) unabdingbar, stellt aber zugleich eine enorme Herausforderung dar. Die Photoemission aus ce{GaAs}--basierten Halbleitern wie z.B. den in dieser Arbeit untersuchten GaAlAs/InGaAlAs Quanten--Übergittern zeichnet sich zwar durch eine hohe Brillanz aus, die geringe Quantenausbeute von nur ca. 1% im Bereich maximaler Polarisation erfordert jedoch hohe Laserintensitäten von mehreren Watt pro $text{cm}^{2}$, was erhebliche thermische Probleme verursacht. rnrnIn dieser Arbeit konnte zunächst gezeigt werden, dass die Lebensdauer einer Photokathode mit steigender Laserleistung bzw. Temperatur exponentiell abnimmt. Durch Einbringen eines DBR--Spiegels zwischen die aktive Zone der Photokathode und ihr Substrat wird ein Großteil des ungenutzten Laserlichts wieder aus dem Kristall herausreflektiert und trägt somit nicht zur Erwärmung bei. Gleichzeitig bildet der Spiegel zusammen mit der Grenzfläche zum Vakuum eine Resonator--Struktur aus, die die aktive Zone umschließt. Dadurch kommt es für bestimmte Wellenlängen zu konstruktiver Interferenz und die Absorption in der aktiven Zone erhöht sich. Beide Effekte konnten durch vergleichenden Messungen an Kathoden mit und ohne DBR--Spiegel nachgewiesen werden. Dabei ergibt sich eine gute Übereinstimmung mit der Vorhersage eines Modells, das auf der dielektrischen Funktion der einzelnen Halbleiterstrukturen beruht. Von besonderer praktischer Bedeutung ist, dass die DBR--Kathode für einen gegebenen Photoemissions-strom eine um einen Faktor $geq$,3{,}5 kleinere Erwärmung aufweist. Dies gilt über den gesamten Wellenlängenbereich in dem die Kathode eine hohe Strahlpolarisation (P$>$80%) produzieren kann, auch im Bereich der Resonanz.rnAus zeitaufgelösten Messungen der Ladungsverteilung und Polarisation lassen sich sowohl Rückschlüsse über die Transportmechanismen im Inneren einer Kathode als auch über die Beschaffenheit ihrer Oberfläche ziehen. Im Rahmen dieser Dissertation konnte die Messgeschwindigkeit der verwendeten Apparatur durch den Einbau eines schnelleren Detektors und durch eine Automatisierung der Messprozedur entscheidend vergrößert und die resultierende Zeitauflösung mit jetzt 1{,}2 Pikosekunden annähernd verdoppelt werden.rnrnDie mit diesen Verbesserungen erhaltenen Ergebnisse zeigen, dass sich der Transport der Elektronen in Superlattice--Strukturen stark vom Transport in den bisher untersuchten Bulk--Kristallen unterscheidet. Der Charakter der Bewegung folgt nicht dem Diffusionsmodell, sondern gibt Hinweise auf lokalisierte Zustände, die nahe der Leitungsbandunterkante liegen und Elektronen für kurze Zeit einfangen können. Dadurch hat die Impulsantwort einer Kathode neben einem schnellen Abfall des Signals auch eine größere Zeitkonstante, die selbst nach 30,ps noch ein Signal in der Größenordnung von ca. 5textperthousand der Maximalintensität erzeugt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auf dem Gebiet der Teilchenbeschleunigung mittels Hochintensitäts-Lasern wurden in der letzten Dekade viele erfolgreiche Entwicklungen hin zu immer höheren Energien und größeren Teilchenzahlen veröffentlicht. In den meisten Fällen wurde der sogenannte TNSA-Prozess (engl. Target-Normal-Sheath-Acceleration (TNSA)) untersucht. Bei diesem Prozess erfolgt die Beschleunigung in dem an der Oberfläche durch Ladungstrennung erzeugten Potential. Ein kaum vermeidbares Problem ist hierbei das resultierende breite Energie-Spektrum der beschleunigten Teilchen. Diese Situation konnte in den letzten Jahren zwar verbessert, aber nicht vollständig gelöst werden. Für Intensitäten größer 10^(20..21) W/cm^2 sagen theoretische Modellrechnungen eine auf dem Lichtdruck basierende Beschleunigung (engl. Radiation-Pressure-Acceleration (RPA)) mit deutlich eingegrenztem, fast monoenergetischem Spektrum voraus. Im Rahmen dieser Arbeit wurde ein Experiment zur Untersuchung dieses Prozesses bei Intensitäten von einigen 10^19 W/cm^2 durchgeführt. Dazu wurden zunächst spezielle Targets entwickelt und als Patent angemeldet, welche den Experimentbedingungen angepasst sind. Durch die Auslegung des experimentellen Aufbaus und der Diagnostiken auf hohe Repetitionsraten, in Verbindung mit einem geeigneten Lasersystem, konnte auf Basis einer Statistik von mehreren Tausend Schüssen ein großer Parameterraum untersucht werden. Untersucht wurden unter anderem die Abhängigkeit von Targetmaterial und Dicke, Intensität, Laserpolarisation und Vorplasmabedingungen. Aus den gewonnenen Daten und Vergleichen mit 2-dimensionalen numerischen Simulationen konnte ein Modell des Beschleunigungsprozesses aufgestellt und durch Vergleich mit den experimentellen Ergebnissen geprüft werden. Dabei wurden klare Indizien für die Existenz eines neuen, nicht feldinduzierten, Beschleunigungsprozesses gefunden. Darüber hinaus wurde zur Polarisationsbeeinflussung ein optisches System entwickelt, das ausschließlich mit reflexiven Elementen arbeitet. Damit konnten viele Nachteile bestehender, auf Verzögerungsplatten beruhender Elemente vermieden, und die Anwendbarkeit bei hohen Laserenergien erreicht werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit ist die Untersuchung von Photokathoden mit negativer Elektronenaffinität (NEA) mittels zeitlich hochauflösender Vermessung der emittierten Ladungs- und Spinpolarisationsverteilungen nach Anregung mit einem ultrakurzen Laserpuls. Untersucht wurden uniaxial deformierte GaAsP-Photokathoden mit dünnen emittierenden Schichten (≤150nm), sowie undeformierte GaAs-Photokathoden mit unterschiedlichen Schichtdicken. Die Untersuchungen wurden an einer 100keV-Elektronenquelle durchgeführt, wie sie am Mainzer Mikrotron (MAMI) zur Erzeugung eines Spinpolarisierten Elektronenstrahls verwendet wird. Mit der Apparatur konnte eine Zeitauflösung von 2,5ps erreicht werden. Es zeigte sich, dass die tatsächliche Antwortzeit der Photokathoden die erreichte Zeitauflösung noch unterschreitet. Eine Depolarisation in den kurzen, wegen der Zeitauflösung auf 2,5ps begrenzten, Elektronenpulsen konnte aber nachgewiesen werden. Weiterhin wurde gezeigt, dass der Polarisationsverlust der emittierten Elektronen bei dünnen Schichten im Wesentlichen auf eine energiekorrelierte Depolarisation beim Durchqueren der Bandbiegungszone zurückzuführen ist. Als weiteres Resultat wird, für die GaAsP-Photokathoden mit einer Schichtdicke von 150nm, eine Obergrenze für die mittlere Emissionszeit von ≤1,25ps angegeben. Daraus ergibt sich nach dem hier verwendeten Diffusionsmodell eine Untergrenze für die Oberflächenrekombinationsgeschwindigkeit an der Bandbiegungszone von S≥1,2·10^7 cm/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurde ein flugzeuggetragenes Laserablations-Einzelpartikel-Massenspektrometer von Grund auf entworfen, gebaut, charakterisiert und auf verschiedenen Feldmesskampagnen eingesetzt. Das ALABAMA (Aircraft-based Laser ABlation Aerosol MAss Spectrometer) ist in der Lage die chemische Zusammensetzung und Größe von einzelnen Aerosolpartikeln im submikrometer-Bereich (135 – 900 nm) zu untersuchen.rnNach dem Fokussieren in einer aerodynamischen Linse wird dafür zunächst derrnaerodynamische Durchmesser der einzelnen Partikel mit Hilfe einer Flugzeitmessung zwischen zwei Dauerstrichlasern bestimmt. Anschließend werden die zuvor detektierten und klassifizierten Partikel durch einen gezielten Laserpuls einzeln verdampft und ionisiert. Die Ionen werden in einem bipolaren Flugzeit-Massenspektrometer entsprechend ihrem Masse zu- Ladungs Verhältnisses getrennt und detektiert. Die entstehenden Massenspektren bieten einen detaillierten Einblick in die chemische Struktur der einzelnen Partikel.rnDas gesamte Instrument wurde so konzipiert, dass es auf dem neuen Höhenforschungsflugzeug HALO und anderen mobilen Plattformen eingesetzt werden kann. Um dies zu ermöglichen wurden alle Komponenten in einem Rahmen mit weniger als 0.45 m³ Volumen untergebracht. Das gesamte Instrument inklusive Rahmen wiegt weniger als 150 kg und erfüllt die strengen sicherheitsvorschriften für den Betrieb an Bord von Forschungsflugzeugen. Damit ist ALABAMA das kleinste und leichteste Instrument seiner Art.rnNach dem Aufbau wurden die Eigenschaften und Grenzen aller Komponenten detailliert im Labor und auf Messkampagnen charakterisiert. Dafür wurden zunächst die Eigenschaften des Partikelstrahls, wie beispielsweise Strahlbreite und –divergenz, ausführlich untersucht. Die Ergebnisse waren wichtig, um die späteren Messungen der Detektions- und Ablationseffizienz zu validieren.rnBei den anschließenden Effizienzmessungen wurde gezeigt, dass abhängig von ihrer Größe und Beschaffenheit, bis zu 86 % der vorhandenen Aerosolpartikel erfolgreich detektiert und größenklassifiziert werden. Bis zu 99.5 % der detektierten Partikel konnten ionisiert und somit chemisch untersucht werden. Diese sehr hohen Effizienzen sind insbesondere für Messungen in großer Höhe entscheidend, da dort zum Teil nur sehr geringe Partikelkonzentrationen vorliegen.rnDas bipolare Massenspektrometer erzielt durchschnittliche Massenauflösungen von bis zu R=331. Während Labor- und Feldmessungen konnten dadurch Elemente wie Au, Rb, Co, Ni, Si, Ti und Pb eindeutig anhand ihres Isotopenmusters zugeordnet werden.rnErste Messungen an Bord eines ATR-42 Forschungsflugzeuges während der MEGAPOLI Kampagne in Paris ergaben einen umfassenden Datensatz von Aerosolpartikeln innerhalb der planetaren Grenzschicht. Das ALABAMA konnte unter harten physischen Bedingungen (Temperaturen > 40°C, Beschleunigungen +/- 2 g) verlässlich und präzise betrieben werden. Anhand von charakteristischen Signalen in den Massenspektren konnten die Partikel zuverlässig in 8 chemische Klassen unterteilt werden. Einzelne Klassen konnten dabei bestimmten Quellen zugeordnet werden. So ließen sich beispielsweise Partikel mit starkerrnNatrium- und Kaliumsignatur eindeutig auf die Verbrennung von Biomasse zurückführen.rnALABAMA ist damit ein wertvolles Instrument um Partikel in-situ zu charakterisieren und somit verschiedenste wissenschaftliche Fragestellungen, insbesondere im Bereich der Atmosphärenforschung, zu untersuchen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmabasierte Röntgenlaser sind aufgrund ihrer kurzen Wellenlänge und schma-rnlen spektralen Bandbreite attraktive Diagnose-Instrumente in einer Vielzahl potentieller Anwendungen, beispielsweise in den Bereichen Spektroskopie, Mikroskopie und EUV-Lithografie. Dennoch sind Röntgenlaser zum heutigen Stand noch nicht sehr weit verbreitet, was vorwiegend auf eine zu geringe Pulsenergie und für manche Anwendungen nicht hinreichende Strahlqualität zurückzuführen ist. In diesem Zusammenhang wurden in den letzten Jahren bedeutende Fortschritte erzielt. Die gleichzeitige Weiterentwicklung von Pumplasersystemen und Pumpmechanismen ermöglichte es, kompakte Röntgenlaserquellen mit bis zu 100 Hz zu betreiben. Um gleichzeitig höhere Pulsenergien, höhere Strahlqualität und volle räumliche Kohärenz zu erhalten, wurden intensive Studien theoretischer und experimenteller Natur durchgeführt. In diesem Kontext wurde in der vorliegenden Arbeit ein experimenteller Aufbau zur Kombination von zwei Röntgenlaser-Targets entwickelt, die sogenannte Butterfly-Konfiguration. Der erste Röntgenlaser wird dabei als sogenannter Seed für das zweite, als Verstärker dienende Röntgenlasermedium verwendet (injection-seeding). Aufrndiese Weise werden störende Effekte vermieden, welche beim Entstehungsprozessrndes Röntgenlasers durch die Verstärkung von spontaner Emission zustande kom-rnmen. Unter Verwendung des ebenfalls an der GSI entwickelten Double-Pulse Gra-rnzing Incidence Pumpschemas ermöglicht das hier vorgestellte Konzept, erstmaligrnbeide Röntgenlasertargets effizient und inklusive Wanderwellenanregung zu pum-rnpen.rnBei einer ersten experimentellen Umsetzung gelang die Erzeugung verstärkter Silber-Röntgenlaserpulse von 1 µJ bei 13.9 nm Wellenlänge. Anhand der gewonnenen Daten erfolgte neben dem Nachweis der Verstärkung die Bestimmung der Lebensdauer der Besetzungsinversion zu 3 ps. In einem Nachfolgeexperiment wurden die Eigenschaften eines Molybdän-Röntgenlaserplasmas näher untersucht. Neben dem bisher an der GSI angewandten Pumpschema kam in dieser Strahlzeit noch eine weitere Technik zum Einsatz, welche auf einem zusätzlichen Pumppuls basierte. In beiden Schemata gelang neben dem Nachweis der Verstärkung die zeitliche und räumliche Charakterisierung des Verstärkermediums. Röntgenlaserpulse mit bis zu 240 nJ bei einer Wellenlänge von 18.9 nm wurden nachgewiesen. Die erreichte Brillanz der verstärkten Pulse lag ca. zwei Größenordnungen über der des ursprünglichen Seeds und mehr als eine Größenordnung über der Brillanz eines Röntgenlasers, dessen Erzeugung auf der Verwendung eines einzelnen Targets basierte. Das in dieser Arbeitrnentwickelte und experimentell verifizierte Konzept birgt somit das Potential, extrem brillante plasmabasierte Röntgenlaser mit vollständiger räumlicher und zeitlicher Kohärenz zu erzeugen.rnDie in dieser Arbeit diskutierten Ergebnisse sind ein wesentlicher Beitrag zu der Entwicklung eines Röntgenlasers, der bei spektroskopischen Untersuchungen von hochgeladenen Schwerionen eingesetzt werden soll. Diese Experimente sind amrnExperimentierspeicherring der GSI und zukünftig auch am High-Energy StoragernRing der FAIR-Anlage vorgesehen.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Jahre 2002 wurde mit dem NA48/1-Detektor eine Datennahme mit hoher Intensität von K_S-Mesonen und neutralen Hyperonen durchgeführt, bei der unter anderem etwa 10^9 Xi^0-Zerfallskandidaten aufgezeichnet wurden. Im Rahmen dieser Arbeit wurden aus diesem Datensatz 6657 Xi^0 -> Sigma^+ e^- Anti-nü und 581 Anti-Xi^0 -> Anti-Sigma^+ e^+ nü-Ereignisse ausgewählt und damit die Verzweigungsverhältnisse BR1(Gamma(Xi^0 -> Sigma^+ e^- Anti-nü)/Gamma(Xi^0 total))=( 2.533 +-0.032(stat) -0.076+0.089(syst) )10^-4 und BR2(Gamma(Anti-Xi^0 -> Anti-Sigma^+ e^+ nü)/Gamma(Anti-Xi^0 total))= ( 2.57 +-0.12(stat) -0.09+0.10(syst) )10^-4 bestimmt. Dieses Ergebnis für BR1 ist etwa 3.5-mal genauer als die bisher veröffentlichte Messung. Die Analyse der Anti-Xi^0-Beta-Zerfälle stellt die erste Messung von BR2 dar. Beide Ergebnisse stimmen mit der theoretischen Vorhersage von 2.6*10^-4 überein. Aus dem Xi^0-Beta-Verzweigungsverhältnis folgt unter Verwendung des experimentellen Wertes des Formfaktorverhältnisses g1/f1 für das CKM-Matrixelement |Vus| = 0.209 +- 0.004(exp) +- 0.026(syst), wobei die dominierende Unsicherheit von g1/f1 herrührt. Außerdem wurden in dieser Arbeit 99 Xi^0 -> Sigma^+ mu^- Anti-nü Zerfallskandidaten mit einem abgeschätzten Untergrund von 30 Ereignissen rekonstruiert und daraus ebenfalls das Verzweigungsverhältnis extrahiert: BR3(Gamma(Xi^0 -> Sigma^+ mu^- Anti-nü)/Gamma(Xi^0 total)) = ( 2.11 +- 0.31(stat) +- 0.15(syst) )10^-6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zu den Hauptcharakteristika von Teilchen gehoert - neben der Masse - die Lebensdauer. Die mittlere Lebensdauer des Xi0-Hyperons, die sich aus der mittleren Lebensdauer des Xi--Hyperons ueber die Delta I=1/2-Regel theoretisch voraussagen laesst, wurde bereits mehrfach experimentell bestimmt. Die neueste Messung aus dem Jahr 1977 besitzt jedoch eine relative Unsicherheit von 5%, was sich mit Daten neuerer Experimente deutlich verbessern laesst. Die mittlere Lebensdauer ist ein wichtiger Parameter bei der Bestimmung des Matrixelements Vus der Cabibbo-Kobayashi-Maskawa-Matrix in semileptonischen Xi0-Zerfaellen. Im Jahre 2002 wurde mit dem NA48-Detektor eine Datennahme mit hoher Intensitaet durchgefuehrt, bei der unter anderem etwa 10^9 Xi0-Zerfallskandidaten aufgezeichnet wurden. Davon wurden im Rahmen dieser Arbeit 192000 Ereignisse des Typs "Xi0 nach Lambda pi0" rekonstruiert und 107000 Ereignisse zur Bestimmung der mittleren Lebensdauer durch Vergleich mit simulierten Ereignissen verwendet. Zur Vermeidung von systematischen Fehlern wurde die Lebensdauer in zehn Energieintervallen durch Vergleich von gemessenen und simulierten Daten ermittelt. Das Ergebnis ist wesentlich genauer als bisherige Messungen und weicht vom Literaturwert (tau=(2,90+-0,09)*10^(-10)s) um (+4,99+-0,50(stat)+-0,58(syst))% ab, was 1,7 Standardabweichungen entspricht. Die Lebensdauer ergibt sich zu tau=(3,045+-0,015(stat)+-0,017(syst))*10^(-10)s. Auf die gleiche Weise konnte mit den zur Verfuegung stehenden Daten erstmals die Lebensdauer des Anti-Xi0-Hyperons gemessen werden. Das Ergebnis dieser Messung ist tau=(3,042+-0,045(stat)+-0,017(syst))*10^(-10)s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden zwei verschiedene Systeme untersucht, deren verbindende Gemeinsamkeit in den verwendeten ortsauflösenden, spektroskopischen Messmethoden der Oberflächenanalytik, wie z.B. abbildendes XPS, Röntgennahkanten-Photoemissionsmikroskopie (XANES-PEEM) und Augerspektroskopie (AES) liegt. Im ersten Teil der Arbeit wurden Diamant-Nukleationsdomänen auf Ir/SrTiO3 untersucht und mit vorherrschenden Modellen aus der Literatur verglichen. Die Nukleationsdomänen, wie sie im Mikrowellen-induzierten CVD Prozess unter Verwendung der BEN Prozedur (bias-enhanced nucleation) entstehen, bilden die „Startschicht“ für ein heteroepitaktisches Wachstum einer hoch orientierten Diamantschicht. Sie entwickeln sich aber unter Bedingungen, unter denen 3D-Diamant abgetragen und weggeätzt wird. Mittels XANES-PEEM Messungen konnte erstmals die lokale Bindungsumgebung des Kohlenstoffs in den Nukleationsdomänen ortsaufgelöst aufgezeigt werden und aus AES Messungen ließ sich die Schichtdicke der Nukleationsdomänen abschätzen. Es zeigte sich, dass die Nukleationsdomänen Bereiche mit etwa 1 nm Dicke darstellen, in denen der Übergang von eine sp2-koordinierte amorphen Kohlenstoff- zu einer Diamantschicht mit hohem sp3 Anteil abläuft. Zur Erklärung des Nukleationsprozesses wurde auf das „Clustermodell“ von Lifshitz et al. zurückgegriffen, welches um einen wesentlichen Aspekt erweitert wurde. Die Stabilität der Nukleationsdomänen gegen die Ätzwirkung des Nukleationsprozesses auf Volumendiamant wird durch eine starke Wechselwirkung zwischen dem Diamant und dem Iridiumsubstrat erklärt, wobei die Dicke von etwa 1 nm als Maß für die Ausdehnung dieses Wechselwirkungsbereichs angesehen wird. Der zweite Teil der Arbeit beschäftigt sich mit der Charakterisierung präsolarer SiC-Körner und darin eingeschlossener Spurenelemente. Neben den Hauptelementen Si und C wurden auch Spinelle wie Chromit (FeCr2O4), Korund (Al2O3) und auch verschiedene Spurenelemente (z. B. Al, Ba und Y) nachgewiesen. Ferner wurden XPS-Linien bei Energien nachgewiesen, welche sich den Seltenen Erden Erbium, Thulium und Dysprosium zuordnen lassen. Aufgrund von Abweichungen zur Literatur bzgl. der ausgeprägten Intensität der XPS-Linien, wurde als alternative Erklärungsmöglichkeit für verschiedene Signale der Nachweis von stark schwefelhaltigen Körnern (z.B. so genannte „Fremdlinge“) mit Aufladungen von mehreren Volt diskutiert. Es zeigt sich, dass abbildendes XPS und XANES-PEEM Methoden zur leistungsfähigen chemischen Charakterisierung von SiC-Körnern und anderer solarer und präsolarer Materie im Größenbereich bis herab zu 100 – 200 nm Durchmesser (z.B. als Grundlage für eine spätere massenspektrometrische Isotopenanalyse)darstellen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wurde die Methode der resonanten Ionisation von neutralen Atomen mittels Laserstrahlung auf die leichten Aktinide Thorium, Uran, Neptunium und Plutonium angewendet und für die Ultraspurenanalyse optimiert. Der empfindliche Nachweis dieser Aktinide stellt eine Herausforderung für die Beobachtung und Bestimmung von radioaktiven Verunreinigungen aus kerntechnischen Anlagen in der Umwelt dar. In einem für diese Untersuchungen entwickelten Quadrupolmassenspektrometer konnte durch Resonanzionisationsspektroskopie jeweils eine Reihe unbekannter Energiezustände in der Elektronenhülle des neutralen Atoms der oben genannten Aktinide identifiziert, sowie effiziente Anregungsschemata für die resonante Ionisation entwickelt und charakterisiert werden. Durch die verwendete in-source-Ionisation, die aufgrund der guten Überlagerung von Laserstrahlung und Atomstrahl eine hohe Nachweiseffizienz gewährleistet, konnten diese Untersuchungen bereits mit einem, für Radionuklide notwendigen, geringen Probeneintrag erfolgen. Die resonante Ionisation erlaubt durch die selektiven resonanten Prozesse eine Unterdrückung unerwünschter Kontaminationen und wurde auf den analytischen Nachweis von Ultraspurengehalten in Umweltproben, sowie die Bestimmung der entsprechenden Isotopenzusammensetzung optimiert. Durch die effiziente in-source-Ionisation mit leistungsstarker gepulster Laserstrahlung, konnten Nachweiseffizienzen im Bereich von bis zu 1% erreicht werden. Dabei wurden für Plutonium in synthetischen Proben, aber auch in ersten Umweltproben, Nachweisgrenzen von 10^4-10^5 Atomen erzielt. Die Verwendung spektral schmalbandiger Dauerstrichlaser und eine Ionisation transversal zum frei propagierenden Atomstrahl ermöglicht durch Auflösung der Isotopieverschiebung eine hohe Selektivität gegenüber dominanten Nachbarisotopen, wohingegen die Ionisationseffizienz deutlich abnimmt. Hiermit konnte für das Ultraspurenisotop U-236 eine Nachweisgrenze bis hinab zu 10^-9 für das Isotopenverhältnis N(U-236)/N(U-238) bestimmt werden.