Entwicklung kohärenter Lichtquellen im XUV-Regime
Data(s) |
2013
|
---|---|
Resumo |
Plasmabasierte Röntgenlaser sind aufgrund ihrer kurzen Wellenlänge und schma-rnlen spektralen Bandbreite attraktive Diagnose-Instrumente in einer Vielzahl potentieller Anwendungen, beispielsweise in den Bereichen Spektroskopie, Mikroskopie und EUV-Lithografie. Dennoch sind Röntgenlaser zum heutigen Stand noch nicht sehr weit verbreitet, was vorwiegend auf eine zu geringe Pulsenergie und für manche Anwendungen nicht hinreichende Strahlqualität zurückzuführen ist. In diesem Zusammenhang wurden in den letzten Jahren bedeutende Fortschritte erzielt. Die gleichzeitige Weiterentwicklung von Pumplasersystemen und Pumpmechanismen ermöglichte es, kompakte Röntgenlaserquellen mit bis zu 100 Hz zu betreiben. Um gleichzeitig höhere Pulsenergien, höhere Strahlqualität und volle räumliche Kohärenz zu erhalten, wurden intensive Studien theoretischer und experimenteller Natur durchgeführt. In diesem Kontext wurde in der vorliegenden Arbeit ein experimenteller Aufbau zur Kombination von zwei Röntgenlaser-Targets entwickelt, die sogenannte Butterfly-Konfiguration. Der erste Röntgenlaser wird dabei als sogenannter Seed für das zweite, als Verstärker dienende Röntgenlasermedium verwendet (injection-seeding). Aufrndiese Weise werden störende Effekte vermieden, welche beim Entstehungsprozessrndes Röntgenlasers durch die Verstärkung von spontaner Emission zustande kom-rnmen. Unter Verwendung des ebenfalls an der GSI entwickelten Double-Pulse Gra-rnzing Incidence Pumpschemas ermöglicht das hier vorgestellte Konzept, erstmaligrnbeide Röntgenlasertargets effizient und inklusive Wanderwellenanregung zu pum-rnpen.rnBei einer ersten experimentellen Umsetzung gelang die Erzeugung verstärkter Silber-Röntgenlaserpulse von 1 µJ bei 13.9 nm Wellenlänge. Anhand der gewonnenen Daten erfolgte neben dem Nachweis der Verstärkung die Bestimmung der Lebensdauer der Besetzungsinversion zu 3 ps. In einem Nachfolgeexperiment wurden die Eigenschaften eines Molybdän-Röntgenlaserplasmas näher untersucht. Neben dem bisher an der GSI angewandten Pumpschema kam in dieser Strahlzeit noch eine weitere Technik zum Einsatz, welche auf einem zusätzlichen Pumppuls basierte. In beiden Schemata gelang neben dem Nachweis der Verstärkung die zeitliche und räumliche Charakterisierung des Verstärkermediums. Röntgenlaserpulse mit bis zu 240 nJ bei einer Wellenlänge von 18.9 nm wurden nachgewiesen. Die erreichte Brillanz der verstärkten Pulse lag ca. zwei Größenordnungen über der des ursprünglichen Seeds und mehr als eine Größenordnung über der Brillanz eines Röntgenlasers, dessen Erzeugung auf der Verwendung eines einzelnen Targets basierte. Das in dieser Arbeitrnentwickelte und experimentell verifizierte Konzept birgt somit das Potential, extrem brillante plasmabasierte Röntgenlaser mit vollständiger räumlicher und zeitlicher Kohärenz zu erzeugen.rnDie in dieser Arbeit diskutierten Ergebnisse sind ein wesentlicher Beitrag zu der Entwicklung eines Röntgenlasers, der bei spektroskopischen Untersuchungen von hochgeladenen Schwerionen eingesetzt werden soll. Diese Experimente sind amrnExperimentierspeicherring der GSI und zukünftig auch am High-Energy StoragernRing der FAIR-Anlage vorgesehen.rn Due to their short wavelength and very narrow spectral bandwidth, plasma-basedrnx-ray lasers present an interesting diagnostic tool for a variety of applications, amongst them spectroscopy, microscopy and EUV-lithography. However, up to date x-ray lasers find only limited use in applications, which is related to low pulse energies and an insufficient quality of the x-ray laser beam. Within this context, tremendous efforts have been achieved over the last few years. The simultaneous improvement of pump laser systems as well as pumping mechanisms lead to compact x-ray laser sources operated with up to 100 Hz. To achieve both, higher pulse energies and beam quality, including full spatial coherence, intense theoretical and experimental studies have been performed.rnIn the presented work, a new experimental design has been developed that allowsrnfor pumping two independent x-ray laser targets at the same time. Within the so-rncalled Butterfly configuration, the x-ray laser pulse generated by the first target is used as a seed pulse. It is injected into the second x-ray laser medium, which acts as an amplifier. This results in the circumvention of undesirable effects, which are related to the amplification of spontaneous emission and limit the beam quality of the x-ray laser. For the first time, the Butterfly setup provides an efficient pumping scheme for both the seed- and the amplifier-target, including travelling wave excitation.rnA first experimental campaign has succeeded in demonstrating a seeded and amplified silver x-ray laser at 13.9 nm and 1 µJ pulse energy. In addition, the measured data reveals the 3 ps lifetime of the population inversion within the silver plasma.rnIn a follow-up experiment, a molybdenum x-ray laser at 18.9 nm was characterized.rnIn addition to the regular pumping scheme used at GSI, a novel pumping strategyrnhas been deployed, which relies on an additional pumping pulse. Seeded x-ray laser operation has been demonstrated in both schemes, resulting in x-ray laser pulses of up to 240 nJ. The peak brilliance of the amplified x-ray laser was two orders of magnitude larger compared to the original seed pulses, and more than one order of magnitude larger compared to an x-ray laser based on a single target. The experimental setup developed and deployed in this work holds the promise to provide extremely brilliant plasma-based x-ray lasers with full temporal and spatial coherence.rnThus, the presented experimental concept presents a highly interesting alternative to the currently more common approach relying on high-order harmonic pulses as a seed source.rnThe results obtained and discussed in this work are a valuable contribution in the development of an x-ray laser for spectroscopy experiments on highly-charged heavy-ions. These experiments are scheduled at the experimental storage ring at GSI, as well as the high-energy storage ring of the future FAIR facility.rn |
Formato |
application/pdf |
Identificador |
urn:nbn:de:hebis:77-35750 |
Idioma(s) |
ger |
Publicador |
08: Physik, Mathematik und Informatik. 08: Physik, Mathematik und Informatik |
Direitos |
http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php |
Palavras-Chave | #ntgenlaser, Plasmaphysik, PHELIX Laser #X-ray laser, plasma physics, PHELIX laser #Physics |
Tipo |
Thesis.Doctoral |