12 resultados para Implicit finite difference approximation scheme

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wird ein neuer Dynamikkern entwickelt und in das bestehendernnumerische Wettervorhersagesystem COSMO integriert. Für die räumlichernDiskretisierung werden diskontinuierliche Galerkin-Verfahren (DG-Verfahren)rnverwendet, für die zeitliche Runge-Kutta-Verfahren. Hierdurch ist ein Verfahrenrnhoher Ordnung einfach zu realisieren und es sind lokale Erhaltungseigenschaftenrnder prognostischen Variablen gegeben. Der hier entwickelte Dynamikkern verwendetrngeländefolgende Koordinaten in Erhaltungsform für die Orographiemodellierung undrnkoppelt das DG-Verfahren mit einem Kessler-Schema für warmen Niederschlag. Dabeirnwird die Fallgeschwindigkeit des Regens, nicht wie üblich implizit imrnKessler-Schema diskretisiert, sondern explizit im Dynamikkern. Hierdurch sindrndie Zeitschritte der Parametrisierung für die Phasenumwandlung des Wassers undrnfür die Dynamik vollständig entkoppelt, wodurch auch sehr große Zeitschritte fürrndie Parametrisierung verwendet werden können. Die Kopplung ist sowohl fürrnOperatoraufteilung, als auch für Prozessaufteilung realisiert.rnrnAnhand idealisierter Testfälle werden die Konvergenz und die globalenrnErhaltungseigenschaften des neu entwickelten Dynamikkerns validiert. Die Massernwird bis auf Maschinengenauigkeit global erhalten. Mittels Bergüberströmungenrnwird die Orographiemodellierung validiert. Die verwendete Kombination ausrnDG-Verfahren und geländefolgenden Koordinaten ermöglicht die Behandlung vonrnsteileren Bergen, als dies mit dem auf Finite-Differenzenverfahren-basierendenrnDynamikkern von COSMO möglich ist. Es wird gezeigt, wann die vollernTensorproduktbasis und wann die Minimalbasis vorteilhaft ist. Die Größe desrnEinflusses auf das Simulationsergebnis der Verfahrensordnung, desrnParametrisierungszeitschritts und der Aufteilungsstrategie wirdrnuntersucht. Zuletzt wird gezeigt dass bei gleichem Zeitschritt die DG-Verfahrenrnaufgrund der besseren Skalierbarkeit in der Laufzeit konkurrenzfähig zurnFinite-Differenzenverfahren sind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mögliche Verformungsmechanismen, die zu den verschiedenen Glimmer- und Mineralfischen führen, sind: intrakristalline Verformung, Kristallrotation, Biegung und Faltung, Drucklösung in Kombination mit Ausfällung und dynamische Rekristallisation oder Mechanismen, die ein großes Mineral in mehrere kleine, fischförmige Kristalle aufspalten.Experimente mit ein neues Verformungsgerät und Objekten in zwei verschiedenen Matrixmaterialien werden beschrieben. Das eine ist PDMS, (Newtonianisch viskoses Polymer), und das andere Tapioca Perlen (Mohr-Couloumb Verhalten). Die Rotation von fischförmigen Objekten in PDMS stimmt mit der theoretischen Rotationsrate für ellipsenförmige Objekte in einem Newtonianischen Material überein. In einer Matrix von Tapioca Perlen nehmen die Objekte eine stabile Lage ein. Diese Orientierung ist vergleichbar mit der von Glimmerfischen. Die Verformung in der Matrix von Tapioca Perlen ist konzentriert auf dünne Scherzonen. Diese Ergebnisse implizieren, daß die Verformung in natürlichen Gesteinen auch in dünnen Scherzonen konzentriert ist.Computersimulationen werden beschrieben, mit denen der Einfluß der Eigenschaften einer Matrix auf die Rotation von Objekten und Verteilung von Deformation untersucht wird.Mit diesen Experimenten wird gezeigt, daß die Orientierung von Glimmerfischen nicht mit Verformung in einem nicht-linearen viskosen Material erklärt werden kann. Eine solche nicht-lineare Rheologie wird im Allgemeinen für die Erdkurste angenommen. Die stabile Orientierung eines Objektes kann mit weicheren Lagen in der Matrix erklärt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit werden Quantum-Hydrodynamische (QHD) Modelle betrachtet, die ihren Einsatz besonders in der Modellierung von Halbleiterbauteilen finden. Das QHD Modell besteht aus den Erhaltungsgleichungen für die Teilchendichte, das Momentum und die Energiedichte, inklusive der Quanten-Korrekturen durch das Bohmsche Potential. Zu Beginn wird eine Übersicht über die bekannten Ergebnisse der QHD Modelle unter Vernachlässigung von Kollisionseffekten gegeben, die aus ein­em Schrödinger-System für den gemischten-Zustand oder aus der Wigner-Glei­chung hergeleitet werden können. Nach der Reformulierung der eindimensionalen QHD Gleichungen mit linearem Potential als stationäre Schrö­din­ger-Gleichung werden die semianalytischen Fassungen der QHD Gleichungen für die Gleichspannungs-Kurve betrachtet. Weiterhin werden die viskosen Stabilisierungen des QHD Modells be­rück­sich­tigt, sowie die von Gardner vorgeschlagene numerische Viskosität für das {sf upwind} Finite-Differenzen Schema berechnet. Im Weiteren wird das viskose QHD Modell aus der Wigner-Glei­chung mit Fokker-Planck Kollisions-Ope­ra­tor hergeleitet. Dieses Modell enthält die physikalische Viskosität, die durch den Kollision-Operator eingeführt wird. Die Existenz der Lösungen (mit strikt positiver Teilchendichte) für das isotherme, stationäre, eindimensionale, viskose Modell für allgemeine Daten und nichthomogene Randbedingungen wird gezeigt. Die dafür notwendigen Abschätzungen hängen von der Viskosität ab und erlauben daher den Grenzübergang zum nicht-viskosen Fall nicht. Numerische Simulationen der Resonanz-Tunneldiode modelliert mit dem nichtisothermen, stationären, eindimensionalen, viskosen QHD Modell zeigen den Einfluss der Viskosität auf die Lösung. Unter Verwendung des von Degond und Ringhofer entwickelten Quanten-Entropie-Minimierungs-Verfahren werden die allgemeinen QHD-Gleichungen aus der Wigner-Boltzmann-Gleichung mit dem BGK-Kollisions-Operator hergeleitet. Die Herleitung basiert auf der vorsichtige Entwicklung des Quanten-Max­well­ians in Potenzen der skalierten Plankschen Konstante. Das so erhaltene Modell enthält auch vertex-Terme und dispersive Terme für die Ge­schwin­dig­keit. Dadurch bleibt die Gleichspannungs-Kurve für die Re­so­nanz-Tunnel­diode unter Verwendung des allgemeinen QHD Modells in einer Dimension numerisch erhalten. Die Ergebnisse zeigen, dass der dispersive Ge­schwin­dig­keits-Term die Lösung des Systems stabilisiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates metallic nanostructures exhibiting surface plasmon resonance for the amplification of fluorescence signal in sandwich immunoassays. In this approach, an analyte is captured by an antibody immobilized on a plasmonic structure and detected by a subsequently bound fluorophore labeled detection antibody. The highly confined field of surface plasmons originates from collective charge oscillations which are associated with high electromagnetic field enhancements at the metal surface and allow for greatly increased fluorescence signal from the attached fluorophores. This feature allows for improving the signal-to-noise ratio in fluorescence measurements and thus advancing the sensitivity of the sensor platform. In particular, the thesis presents two plasmonic nanostructures that amplify fluorescence signal in devices that rely on epifluorescence geometry, in which the fluorophore absorbs and emits light from the same direction perpendicular to the substrate surface.rnThe first is a crossed relief gold grating that supports propagating surface plasmon polaritons (SPPs) and second, gold nanoparticles embedded in refractive index symmetric environment exhibiting collective localized surface plasmons (cLSPs). Finite-difference time-domain simulations are performed in order to design structures for the optimum amplification of established Cy5 and Alexa Fluor 647 fluorophore labels with the absorption and emission wavelengths in the red region of spectrum. The design takes into account combined effect of surface plasmon-enhanced excitation rate, directional surface plasmon-driven emission and modified quantum yield for characteristic distances in immunoassays. Homebuilt optical instruments are developed for the experimental observation of the surface plasmon mode spectrum, measurements of the angular distribution of surface plasmon-coupled fluorescence light and a setup mimicking commercial fluorescence reading systems in epifluorescence geometry.rnCrossed relief grating structures are prepared by interference lithography and multiple copies are made by UV nanoimprint lithography. The fabricated crossed diffraction gratings were utilized for sandwich immunoassay-based detection of the clinically relevant inflammation marker interleukin 6 (IL-6). The enhancement factor of the crossed grating reached EF=100 when compared to a flat gold substrate. This result is comparable to the highest reported enhancements to date, for fluorophores with relatively high intrinsic quantum yield. The measured enhancement factor excellently agrees with the predictions of the simulations and the mechanisms of the enhancement are explained in detail. Main contributions were the high electric field intensity enhancement (30-fold increase) and the directional fluorescence emission at (4-fold increase) compared to a flat gold substrate.rnCollective localized surface plasmons (cLSPs) hold potential for even stronger fluorescence enhancement of EF=1000, due to higher electric field intensity confinement. cLSPs are established by diffractive coupling of the localized surface plasmon resonance (LSPR) of metallic nanoparticles and result in a narrow resonance. Due to the narrow resonance, it is hard to overlap the cLSPs mode with the absorption and emission bands of the used fluorophore, simultaneously. Therefore, a novel two resonance structure that supports SPP and cLSP modes was proposed. It consists of a 2D array of cylindrical gold nanoparticles above a low refractive index polymer and a silver film. A structure that supports the proposed SPP and cLSP modes was prepared by employing laser interference lithography and the measured mode spectrum was compared to simulation results.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we consider three different models for strongly correlated electrons, namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model, both with a semi-elliptical density of states in the limit of infinite dimensions d, and the attractive Hubbard model on a square lattice in d=2. In the first part, we study a two-band Hubbard model with unequal bandwidths and anisotropic Hund's rule coupling (J_z-model) in the limit of infinite dimensions within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result is that the J_z-model describes the occurrence of an orbital-selective Mott transition (OSMT), in contrast to earlier findings. We investigate the model with a high-precision DMFT algorithm, which was developed as part of this thesis and which supplements QMC with a high-frequency expansion of the self-energy. The main advantage of this scheme is the extraordinary accuracy of the numerical solutions, which can be obtained already with moderate computational effort, so that studies of multi-orbital systems within the DMFT+QMC are strongly improved. We also found that a suitably defined Falicov-Kimball (FK) model exhibits an OSMT, revealing the close connection of the Falicov-Kimball physics to the J_z-model in the OSM phase. In the second part of this thesis we study the attractive Hubbard model in two spatial dimensions within second-order self-consistent perturbation theory. This model is considered on a square lattice at finite doping and at low temperatures. Our main result is that the predictions of first-order perturbation theory (Hartree-Fock approximation) are renormalized by a factor of the order of unity even at arbitrarily weak interaction (U->0). The renormalization factor q can be evaluated as a function of the filling n for 00, the q-factor vanishes, signaling the divergence of self-consistent perturbation theory in this limit. Thus we present the first asymptotically exact results at weak-coupling for the negative-U Hubbard model in d=2 at finite doping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thema dieser Arbeit ist die Entwicklung und Kombination verschiedener numerischer Methoden, sowie deren Anwendung auf Probleme stark korrelierter Elektronensysteme. Solche Materialien zeigen viele interessante physikalische Eigenschaften, wie z.B. Supraleitung und magnetische Ordnung und spielen eine bedeutende Rolle in technischen Anwendungen. Es werden zwei verschiedene Modelle behandelt: das Hubbard-Modell und das Kondo-Gitter-Modell (KLM). In den letzten Jahrzehnten konnten bereits viele Erkenntnisse durch die numerische Lösung dieser Modelle gewonnen werden. Dennoch bleibt der physikalische Ursprung vieler Effekte verborgen. Grund dafür ist die Beschränkung aktueller Methoden auf bestimmte Parameterbereiche. Eine der stärksten Einschränkungen ist das Fehlen effizienter Algorithmen für tiefe Temperaturen.rnrnBasierend auf dem Blankenbecler-Scalapino-Sugar Quanten-Monte-Carlo (BSS-QMC) Algorithmus präsentieren wir eine numerisch exakte Methode, die das Hubbard-Modell und das KLM effizient bei sehr tiefen Temperaturen löst. Diese Methode wird auf den Mott-Übergang im zweidimensionalen Hubbard-Modell angewendet. Im Gegensatz zu früheren Studien können wir einen Mott-Übergang bei endlichen Temperaturen und endlichen Wechselwirkungen klar ausschließen.rnrnAuf der Basis dieses exakten BSS-QMC Algorithmus, haben wir einen Störstellenlöser für die dynamische Molekularfeld Theorie (DMFT) sowie ihre Cluster Erweiterungen (CDMFT) entwickelt. Die DMFT ist die vorherrschende Theorie stark korrelierter Systeme, bei denen übliche Bandstrukturrechnungen versagen. Eine Hauptlimitation ist dabei die Verfügbarkeit effizienter Störstellenlöser für das intrinsische Quantenproblem. Der in dieser Arbeit entwickelte Algorithmus hat das gleiche überlegene Skalierungsverhalten mit der inversen Temperatur wie BSS-QMC. Wir untersuchen den Mott-Übergang im Rahmen der DMFT und analysieren den Einfluss von systematischen Fehlern auf diesen Übergang.rnrnEin weiteres prominentes Thema ist die Vernachlässigung von nicht-lokalen Wechselwirkungen in der DMFT. Hierzu kombinieren wir direkte BSS-QMC Gitterrechnungen mit CDMFT für das halb gefüllte zweidimensionale anisotrope Hubbard Modell, das dotierte Hubbard Modell und das KLM. Die Ergebnisse für die verschiedenen Modelle unterscheiden sich stark: während nicht-lokale Korrelationen eine wichtige Rolle im zweidimensionalen (anisotropen) Modell spielen, ist in der paramagnetischen Phase die Impulsabhängigkeit der Selbstenergie für stark dotierte Systeme und für das KLM deutlich schwächer. Eine bemerkenswerte Erkenntnis ist, dass die Selbstenergie sich durch die nicht-wechselwirkende Dispersion parametrisieren lässt. Die spezielle Struktur der Selbstenergie im Impulsraum kann sehr nützlich für die Klassifizierung von elektronischen Korrelationseffekten sein und öffnet den Weg für die Entwicklung neuer Schemata über die Grenzen der DMFT hinaus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.