52 resultados para Molecular-dynamics simulations
Resumo:
To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.
Resumo:
This thesis work is devoted to the conceptual and technical development of the Adaptive Resolution Scheme (AdResS), a molecular dynamics method that allows the simulation of a system with different levels of resolution simultaneously. The simulation domain is divided into high and low resolution zones and a transition region that links them, through which molecules can freely diffuse.rnThe first issue of this work regards the thermodynamic consistency of the method, which is tested and verified in a model liquid of tetrahedral molecules. The results allow the introduction of the concept of the Thermodynamic Force, an external field able to correct spurious density fluctuations present in the transition region in usual AdResS simulations.rnThe AdResS is also applied to a system where two different representations with the same degree of resolution are confronted. This simple test extends the method from an Adaptive Resolution Scheme to an Adaptive Representation Scheme, providing a way of coupling different force fields based on thermodynamic consistency arguments. The Thermodynamic Force is successfully applied to the example described in this work as well.rnAn alternative approach of deducing the Thermodynamic Force from pressure consistency considerations allows the interpretation of AdResS as a first step towards a molecular dynamics simulation in the Grand Canonical ensemble. Additionally, such a definition leads to a practical way of determining the Thermodynamic Force, tested in the well studied tetrahedral liquid. The effects of AdResS and this correction on the atomistic domain are analyzed by inspecting the local distribution of velocities, radial distribution functions, pressure and particle number fluctuation. Their comparison with analogous results coming from purely atomistic simulations shows good agreement, which is greatly improved under the effect of the external field.rnA further step in the development of AdResS, necessary for several applications in biophysics and material science, consists of its application to multicomponent systems. To this aim, the high-resolution representation of a model binary mixture is confronted with its coarse-grained representation systematically parametrized. The Thermodynamic Force, whose development requires a more delicate treatment, also gives satisfactory results.rnFinally, AdResS is tested in systems including two-body bonded forces, through the simulation of a model polymer allowed to adaptively change its representation. It is shown that the distribution functions that characterize the polymer structure are in practice not affected by the change of resolution.rnThe technical details of the implementation of AdResS in the ESPResSo package conclude this thesis work.
Resumo:
Molekulardynamik-Simulationen zu OberflächeneigenschaftenvonSiliziumdioxid-Schmelzen In der vorliegenden Arbeit werdenMolekulardynamik-Computersimulationenzur Untersuchung der statischen und dynamischenOberflächeneigenschafteneiner Siliziumdioxid (SiO$_2$)-Schmelze durchgeführt.Als Modellpotential verwenden wirein in der Literatur als BKS-Potential bezeichnetesPaarpotential.Wir betrachten in dieser Arbeit zwei Systemgeometrien: zumeinenSysteme aus 432, 1536 und 4608 Atomen ohne periodischeRandbedingungen(Tropfen), zum anderen ein System aus 1152 Atomen mitperiodischen Randbedingungen in zwei Richtungen (dünnerFilm).Für beide Geometrien finden wir im Inneren der Systemekonstante Dichten.Direktan der Oberfläche halten sich ausschließlich Sauerstoffatomeauf.Die Strukturan der Oberfläche erscheint weniger ausgeprägt mit mehrDefekten, als im Inneren des Systems.Es erweist sich,daß viele Eigenschaften statischer Größen, die wir an derOberfläche im Vergleich zum Inneren finden, aufdas Vorhandensein von Zweierringen zurückzuführen sind.Bei der Betrachtung der dynamischen Größen finden wir eineerhöhteBeweglichkeit der Atome an der Oberfläche gegenüber demSysteminneren.
Resumo:
In der vorliegenden Arbeit wurde die Druckabhängigkeit der molekularen Dynamik mittels 2H-NMR und Viskositätsmessungen untersucht. Für die Messungen wurde der niedermolekulare organische Glasbildner ortho-Terphenyl (OTP) ausgewählt, da dieser aufgrund einer Vielzahl vorliegender Arbeiten als Modellsubstanz angesehen werden kann. Daneben wurden auch Messungen an Salol durchgeführt.Die Untersuchungen erstreckten sich über einen weiten Druck- und Temperaturbereich ausgehend von der Schmelze bis weit in die unterkühlte Flüssigkeit. Dieser Bereich wurde aufgrund experimenteller Voraussetzungen immer durch eine Druckerhöhung erreicht.Beide Substanzen zeigten druckabhängig ein Verhalten, das dem der Temperaturvariation bei Normaldruck sehr ähnelt. Auf einer Zeitskala der molekularen Dynamik von 10E-9 s bis zu 10E+2 s wurde daher am Beispiel von OTP ein Druck-Temperatur-Zeit-Superpositionsprinzip diskutiert. Zudem konnte eine Temperatur-Dichte-Skalierung mit rho T-1/4 erfolgreich durchgeführt werden. Dies entspricht einem rein repulsiven Potentialverlauf mit rho -12±3 .Zur Entscheidung, ob die Verteilungsbreiten der mittleren Rotationskorrelationszeiten durch Druckvariation beeinflußt werden, wurden auch Ergebnisse anderer experimenteller Methoden herangezogen. Unter Hinzuziehung aller Meßergebnisse kann sowohl eine Temperatur- als auch Druckabhängigkeit der Verteilungsbreite bestätigt werden. Zur Auswertung von Viskositätsdaten wurde ein Verfahren vorgestellt, das eine quantitative Aussage über den Fragilitätsindex von unterkühlten Flüssigkeiten auch dann zuläßt, wenn die Messungen nicht bis zur Glasübergangstemperatur Tg durchgeführt werden. Die Auswertung der druckabhängigen Viskositätsdaten von OTP und Salol zeigt einen sehr differenzierten druckabhängigen Verlauf des Fragilitätsindexes für beide Glasbildner. OTP zeigt zunächst eine leichte Abnahme und danach wieder eine Zunahme des Fragilitätsindexes, dieses Ergebnis wird auch von Simulationsdaten, die der Literatur entnommen wurden, unterstützt. Salol hingegen zeigt zunächst eine deutliche Zunahme und danach eine Abnahme des Fragilitätsindexes. Das unterschiedliche Verhalten der beiden Glasbildner mit ähnlichem Fragilitätsindex bei Normaldruck wird auf die Wasserstoffbrückenbindungen innerhalb von Salol zurückgeführt.
Resumo:
The topic of this thesis is the investigation of structure,order and dynamics in discotic mesogens by advancedsolid-state NMR spectroscopy. Most of the discotic mesogensunder investigation are hexa-peri-hexabenzocoronene (HBC)derivatives which are of particular interest for potentialdevice applications due to their high one-dimensional chargecarrier mobilities. The supramolecular stacking arrangement of the discoticcores was investigated by 2D 1H-1H double-quantum (DQ)methods, which were modified by incorporating the WATERGATEsuppression technique into the experiments in order toovercome severe phase problems arising from the strongsignal of the long alkyl sidechains. Molecular dynamics and sample orientation was probed throughthe generation of sideband patterns by reconversion rotorencoding in 2D recoupling experiments. These experimentswere extended by new recoupling schemes to enable thedistinction of motion and orientation effects. The solid-state NMR studies presented in this work aim tothe understanding of structure-property relationships in theinvestigated discotic materials, while the experimentsapplied to these materials include new recoupling schemeswhich make the desired information on molecular orientationand dynamics accessible without isotope labelling.
Resumo:
This thesis presents new methods to simulate systems with hydrodynamic and electrostatic interactions. Part 1 is devoted to computer simulations of Brownian particles with hydrodynamic interactions. The main influence of the solvent on the dynamics of Brownian particles is that it mediates hydrodynamic interactions. In the method, this is simulated by numerical solution of the Navier--Stokes equation on a lattice. To this end, the Lattice--Boltzmann method is used, namely its D3Q19 version. This model is capable to simulate compressible flow. It gives us the advantage to treat dense systems, in particular away from thermal equilibrium. The Lattice--Boltzmann equation is coupled to the particles via a friction force. In addition to this force, acting on {it point} particles, we construct another coupling force, which comes from the pressure tensor. The coupling is purely local, i.~e. the algorithm scales linearly with the total number of particles. In order to be able to map the physical properties of the Lattice--Boltzmann fluid onto a Molecular Dynamics (MD) fluid, the case of an almost incompressible flow is considered. The Fluctuation--Dissipation theorem for the hybrid coupling is analyzed, and a geometric interpretation of the friction coefficient in terms of a Stokes radius is given. Part 2 is devoted to the simulation of charged particles. We present a novel method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. This algorithm scales linearly, too. We focus on the Molecular Dynamics version of the method and show that it is intimately related to the Car--Parrinello approach, while being equivalent to solving Maxwell's equations with freely adjustable speed of light. The Lagrangian formulation of the coupled particles--fields system is derived. The quasi--Hamiltonian dynamics of the system is studied in great detail. For implementation on the computer, the equations of motion are discretized with respect to both space and time. The discretization of the electromagnetic fields on a lattice, as well as the interpolation of the particle charges on the lattice is given. The algorithm is as local as possible: Only nearest neighbors sites of the lattice are interacting with a charged particle. Unphysical self--energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green's function. The method allows easy parallelization using standard domain decomposition. Some benchmarking results of the algorithm are presented and discussed.
Resumo:
The subject of this thesis are the interactions between nucleosome core particles (NCPs). NCPs are the primary storage units of DNA in eucaryotic cells. Each NCP consists of a core of eight histone proteins and a strand of DNA, which is wrapped around about two times. Each histone protein has a terminal tail passing over and between the superhelix of the wrapped DNA. Special emphasis was placed on the role of the histone tails, since experimental ndings suggest that the tails have a great in uence on the mutual attraction of the NCPs. In those experiments Mangenot et al. observe a dramatic change in the con guration of the tails, which is accompanied by evidence of mutual attraction between NCPs, when a certain salt concentration is reached. Existing models used in the theoretical approaches and in simulations focus on the description of the histone core and the wrapped DNA, but neglect the histone tails. We introduce the multi chain complex as a new simulation model. Here the histone core and the wrapping DNA are modelled via a charged sphere, while the histone tails are represented by oppositely charged chains grafted on the sphere surface. We start by investigating the parameter space describing a single NCP. The Debye-Huckel potential is used to model the electrostatic interactions and to determine the e ective charge of the NCP core. This value is subsequently used for a study of the pairinteraction of two NCPs via an extensive Molecular Dynamics study. The monomer distribution of the full chain model is investigated. The existence of tail bridges between the cores is demonstrated. Finally, by discriminating between bridging and non-bridging con gurations, we can show that the effect of tail bridging between the spheres does indeed account for the observed attraction. The full chain model can serve as a model to study the acetylation of the histone tails of the nucleosome. The reduction of the charge fraction of the tails, that corresponds to the process of acetylation, leads to a reduction or even the disappearance of the attraction. A recent MC study links this e ect to the unfolding of the chromatin ber in the case of acetylated histone tails. In this case the acetylation of the histone tails leads to the formation of heterochromatin, and one could understand how larger regions of the genetic information could be inactivated through this mechanism.
Resumo:
In dieser Arbeit werden Molekulardynamik-Computersimulationen zur Untersuchung der statischen und dynamischen Eigenschaften einer amorph/kristallinen Siliziumdioxid(SiO2)-Grenzschicht durchgefuehrt.Die Grenzflaeche wird von der [100]-Ebene des beta-Kristobalit-Kristalls und der fluessigen SiO2-Phase gebildet und in einem Temperaturbereich zwischen 2900K und 3100K im Zustand eines metastabilen Gleichgewichts untersucht. Als Modellpotential zur Beschreibung der mikroskopischen Wechselwirkungen zwischen den Teilchen wird ein einfaches Paarpotential aus der Literatur verwendet, das sowohl die Struktur der kristallinen Phase als auch die der fluessigen Phase gut reproduziert. Bezogen auf die Dichte und die potentielle Energie der Teilchen erstreckt sich der Uebergang von der fluessigen in die kristalline Phase ueber 3-5 Atomlagen. Ein Layering-Effekt der Dichte in der fluessigen Phase in der Naehe der Grenzschicht wird nicht beobachtet. Der Einfluss der Grenzschicht auf statische Groessen, welche das System auf einer mittelreichweitigen Laengenskala beschreiben (z. B. Koordinationszahlverteilung und Ringverteilung) reicht im Vergleich dazu weiter in die fluessige Phase hinein und manifestiert sich in Defektstrukturen, wie z. B. der Erhoehung der Wahrscheinlichkeit fuer das Auftreten von 5-fach koordiniertem Silizium und der vermehrten Bildung von 2er-Ringen in der Fluessigkeit. Dies beguenstigt das Aufbrechen und Umklappen von Si-O-Bindungen und fuehrt zu einer Beschleunigung der Dynamik und einer Erhoehung der Diffusionsgeschwindigkeit in der Fluessigkeit. Im weiteren wird die Hochfrequenzdynamik der reinen SiO2-Fluessigkeit untersucht. Dazu berechnen wir die vibratorische Zustandsdichte in harmonischer Naeherung aus der inhaerenten Struktur. Wir finden einen stark ausgepraegten Peak bei einer Frequenz von 0.6 THz. Dieser Peak kann der niederenergetischsten transversalen akustischen Mode zugeordnet werden, die auch als Scherschwingung des Systems direkt sichtbar ist.
Resumo:
In der vorliegenden Arbeit wird mittels Molekulardynamik(MD)-Computersimulationen die Dynamik von verschiedenen Alkalisilikaten in der Schmelze und im Glas untersucht. Es ist bekannt, daß diese Systeme ionenleitend sind, was auf eine hohe Mobilität der Alkaliionen im Vergleich zu den glasbildenden Komponenten Si und O zurückzuführen ist. Im Mittelpunkt des Interesses steht der sog. Mischalkalieffekt (MAE), der in ternären Mischungen aus Siliziumdioxid mit zwei Alkalioxiden auftritt. Gegenüber Mischungen mit nur einer Alkaliionensorte weisen letztere Systeme eine signifikante Verlangsamung der Alkaliionendiffusion auf. Zunächst werden zwei binäre Alkalisilikate simuliert, nämlich Lithiumdisilikat (LS2) und Kaliumdisilikat (KS2). Die Simulationen zeigen, daß der Ursprung der hohen Mobilität der Alkaliionen in der Struktur begründet ist. KS2 und LS2 weisen auf intermediären Längenskalen Ordnung auf, die in partiellen statischen Strukturfaktoren durch Prepeaks reflektiert ist. Die den Prepeaks zugrundeliegende Struktur erklärt sich durch perkolierende Netzwerke aus alkalioxidreichen Kanälen, die als Diffusionskanäle für die mobilen Alkaliionen fungieren. In diesen Kanälen bewegen sich die Ionen mittels Sprüngen (Hopping) zwischen ausgezeichneten Plätzen. In der Simulation beobachtet man für die hohen Temperaturen (4000K>=1500K) eine ähnliche Aktivierungsenergie wie im Experiment. Im Experiment findet allerdings unterhalb von ca.1200K ein Crossover in ein Arrheniusverhalten mit höherer Aktivierungsenergie statt, welches von der Simulation nicht nachvollzogen wird. Das kann mit der in der Simulation nicht im Gleichgewicht befindlichen Si-O-Matrix erklärt werden, bei der Alterungseffekte beobachtet werden. Am stärksten ist der MAE für eine Alkalikomponente, wenn deren Konzentrationsanteil in einem ternären Mischalkalisystem gegen 0 geht. Daher wird ein LS2-System untersucht, in dem ein Li-Ion gegen ein K-Ion getauscht wird. Der Einfluß des K-Ions ist sowohl lokal in den charakteristischen Abständen zu den ersten nächsten Nachbarn (NN) zu sehen, als auch in der ortsaufgelösten Koordinationszahlverteilung bis zu Längenskalen von ca. 8,5 Angstrom. Die Untersuchung der Dynamik des eingesetzten K-Ions zeigt, daß die Sprungwahrscheinlichkeit nicht mit der Lokalisierung, einem Maß für die Bewegung eines Teilchens um seine Ruheposition, korreliert ist, aber daß eine chemische Umgebung mit wenig Li- und vielen O-NN oder vielen Li- und wenig O-NN ein Sprungereignis begünstigt. Zuletzt wird ein ternäres Alkalisilikat (LKS2) untersucht, dessen Struktur alle charakteristischen Längenskalen von LS2 und KS2 aufweist. Es stellt sich also eine komplexe Struktur mit zwei perkolierenden Subnetzwerken für Alkaliionen ein. Die Untersuchung der Dynamik zeigt eine geringe Wahrscheinlichkeit dafür auf, daß Ionen in ein Subnetzwerk andersnamiger Ionen springen. Auch kann gezeigt werden, daß das Modellpotential den MAE reproduzieren kann, daß also die Diffusionskonstanten in LKS2 bei bis zu einer Größenordnung langsamer sind als in KS2 bzw. LS2. Der beobachtete Effekt stellt sich zudem vom funktionalen Verlauf her so dar, wie er beim MAE erwartet wird. Es wurde auch festgestellt, daß trotz der zeitlichen Verzögerung in den dynamischen Größen die Anzahl der Sprünge pro Zeit nicht geringer ist und daß für niedrige Temperaturen (d.h.im Glas) Sprünge auf den Nachbarplatz mit anschließendem Rücksprung auf die vorherige Position deutlich wahrscheinlicher sind als bei hohen Temperaturen (also in der Schmelze). Die vorliegenden Resultate geben Aufschluß über die Details der Mechanismen mikroskopischer Ionenleitung in binären und ternären Alkalisilikaten sowie dem MAE.
Resumo:
Die FT-Rheologie wird zur Unterscheidung verschiedener Kamm-Topologien in Polystyrollösungen und –schmelzen angewendet. Die Polystyrole werden in Abhängigkeit der Deborahzahl De unter LAOS-Bedingungen vermessen. Die Meßergebnisse zeigen, daß der Schritt von wohldefinierten Systemen (lineare Ketten, Sterne) zu solchen mit statistischer Verteilung wie in Kämmen zu großen Veränderungen sowohl im linearen als auch im nichtlinearen Bereich der rheologischen Messungen führt. Sowohl die Masterkurven als auch die Intenstiäten I3/1 und Phasen Phi3 der Nichtlinearitäten der einzelnen Proben weisen jeweils deutliche Unterschiede untereinander auf. Diese sind durch die bisherigen Ergebnisse noch nicht vollständig mit topologischen Merkmalen in Verbindung zu bringen. Die Messungen wurden mit dem von McLeish eingeführten Pom-pom Modell und daraus weiterentwickelten double convected-Pom-pom Modell (DCPP) simuliert und lieferten gute Übereinstimmung sowie auch Vorhersagen über den experimentell nicht mehr zugänglichen Bereich. Zur Untersuchung des Einflusses von mechanischer Scherung auf die lokale, molekulare Dynamik wird das LAOS-Experiment in situ mit dielektrischer Spektroskopie kombiniert. Dazu wurde eine Apparatur entwickelt, die das hochsensitive ARES-Rheometer mit dem hochauflösenden dielektrischen ALPHA-Analyzer verbindet. Mit dieser Apparatur wurde das Typ-A Polymer 1,4-cis-Polyisopren, mit einem Dipolmoment entlang des Rückgrats, bei oszillatorischer Scherung unter gleichzeitiger Aufnahme eines dielektrischen Spektrums vermessen. Es konnte gezeigt werden, daß die oszillatorische Verscherung weder die charakteristische Relaxationszeit noch die Form des Normal Mode Peaks beeinflußt, wohl aber die dielektrische Stärke Delta epsilon. Diese entspricht der Fläche unter dem e“-Peak und kann mit einer Debye- und einer Cole/Davidson-Funktion angepasst werden. Die Abnahme der dielektrischen Stärke mit zunehmender Scheramplitude kann mit der Orientierungsverteilung der End-zu-End-Vektoren in der Probe erklärt werden.
Resumo:
Germaniumdioxid (GeO2) ist ein Glasbildner, der wie das homologe SiO2 ein ungeordnetes tetraedrisches Netzwerk ausbildet. In dieser Arbeit werden mit Hilfe von Molekulardynamik-Computersimulationen die Struktur und Dynamik von GeO2 in Abhängigkeit von der Temperatur untersucht. Dazu werden sowohl Simulationen mit einem klassischen Paarpotentialmodell von Oeffner und Elliott als auch ab initio-Simulationen gemäß der Car-Parrinello-Molekulardynamik (CPMD), bei der elektronische Freiheitsgrade mittels Dichtefunktionaltheorie beschrieben werden, durchgeführt. In der klassischen Simulation werden dazu ein Temperaturen zwischen 6100 K und 2530 K betrachtet. Darüberhinaus ermöglichen Abkühlläufe auf T=300 K das Studium der Struktur des Glases. Zum Vergleich werden CPMD-Simulationen für kleinere Systeme mit 60 bzw. 120 Teilchen bei den Temperaturen 3760 K und 3000 K durchgeführt. In den klassischen Simulationen kann die im Experiment bis 1700 K nachgewiesene, im Vergleich zu SiO2 starke, Temperaturabhängigkeit der Dichte auch bei höheren Temperaturen beobachtet werden. Gute Übereinstimmungen der Simulationen mit experimentellen Daten zeigen sich bei der Untersuchung verschiedener struktureller Größen, wie z.B. Paarkorrelationsfunktionen, Winkelverteilungen, Koordinationszahlen und Strukturfaktoren. Es können leichte strukturelle Abweichungen der CPMD-Simulationen von den klassischen Simulationen aufgezeigt werden: 1. Die Paarabstände in CPMD sind durchweg etwas kleiner. 2. Es zeigt sich, daß die Bindungen in den ab initio-Simulationen weicher sind, was sich auch in einer etwas stärkeren Temperaturabhängigkeit der strukturellen Größen im Vergleich zu den klassischen Simulationen niederschlägt. 3. Für CPMD kann ein vermehrtes Auftreten von Dreierringstrukturen gezeigt werden. 4. In der CPMD werden temperaturabhängige Defektstrukturen in Form von Sauerstoffpaaren beobachtet, die vor allem bei 3760 K, kaum jedoch bei 3000 K auftreten. Alle strukturellen Unterschiede zwischen klassischer und CPMD-Simulation sind eindeutig nicht auf Finite-Size-Effekte aufgrund der kleinen Systemgrößen in den CPMD-Simulationen zurückzuführen, d.h. sie sind tatsächlich methodisch bedingt. Bei der Dynamik von GeO2 wird in den klassischen Simulationen ebenfalls eine gute Übereinstimmung mit experimentellen Daten beobachtet, was ein Vergleich der Diffusionskonstanten mit Viskositätsmessungen bei hohen Temperaturen belegt. Die Diffusionskonstanten zeigen teilweise ein verschiedenes Verhalten zum homologen SiO2. Sie folgen in GeO2 bei Temperaturen unter 3000 K einem Arrheniusgesetz mit einer deutlich niedrigeren Aktivierungsenergie. Darüberhinaus werden die Möglichkeiten der Parametrisierung eines neuen klassischen Paarpotentials mittels der Kräfte entlang der CPMD-Trajektorien untersucht. Es zeigt sich, daß derartige Parametrisierungen sehr stark von den gewählten Startparametern abhängen. Ferner führen sämtliche an die Schmelze parametrisierten Potentiale zu zu hohen Dichten im Vergleich zum Experiment. Zum einen liegt dies sehr wahrscheinlich daran,daß für das System GeO2 Kraftdaten allein nicht ausreichen, um grundlegende strukturelle Größen, wie z.B. Paarkorrelationen und Winkelverteilungen, der CPMD-Simulationen gut reproduzieren zu können. Zum anderen ist wohl die Beschreibung mittels Paarpotentialen nicht ausreichend und es ist erforderlich, Merkörperwechselwirkungen in Betracht zu ziehen.
Resumo:
A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.
Resumo:
Development of empirical potentials for amorphous silica Amorphous silica (SiO2) is of great importance in geoscience and mineralogy as well as a raw material in glass industry. Its structure is characterized as a disordered continuous network of SiO4 tetrahedra. Many efforts have been undertaken to understand the microscopic properties of silica by classical molecular dynamics (MD) simulations. In this method the interatomic interactions are modeled by an effective potential that does not take explicitely into account the electronic degrees of freedom. In this work, we propose a new methodology to parameterize such a potential for silica using ab initio simulations, namely Car-Parrinello (CP) method [Phys. Rev. Lett. 55, 2471 (1985)]. The new potential proposed is compared to the BKS potential [Phys. Rev. Lett. 64, 1955 (1990)] that is considered as the benchmark potential for silica. First, CP simulations have been performed on a liquid silica sample at 3600 K. The structural features so obtained have been compared to the ones predicted by the classical BKS potential. Regarding the bond lengths the BKS tends to underestimate the Si-O bond whereas the Si-Si bond is overestimated. The inter-tetrahedral angular distribution functions are also not well described by the BKS potential. The corresponding mean value of theSiOSi angle is found to be ≃ 147◦, while the CP yields to aSiOSi angle centered around 135◦. Our aim is to fit a classical Born-Mayer/Coulomb pair potential using ab initio calculations. To this end, we use the force-matching method proposed by Ercolessi and Adams [Europhys. Lett. 26, 583 (1994)]. The CP configurations and their corresponding interatomic forces have been considered for a least square fitting procedure. The classical MD simulations with the resulting potential have lead to a structure that is very different from the CP one. Therefore, a different fitting criterion based on the CP partial pair correlation functions was applied. Using this approach the resulting potential shows a better agreement with the CP data than the BKS ones: pair correlation functions, angular distribution functions, structure factors, density of states and pressure/density were improved. At low temperature, the diffusion coefficients appear to be three times higher than those predicted by the BKS model, however showing a similar temperature dependence. Calculations have also been carried out on crystalline samples in order to check the transferability of the potential. The equilibrium geometry as well as the elastic constants of α-quartz at 0 K are well described by our new potential although the crystalline phases have not been considered for the parameterization. We have developed a new potential for silica which represents an improvement over the pair potentials class proposed so far. Furthermore, the fitting methodology that has been developed in this work can be applied to other network forming systems such as germania as well as mixtures of SiO2 with other oxides (e.g. Al2O3, K2O, Na2O).
Resumo:
The goal of this thesis was the investigation of the structure, conformation, supramolecular order and molecular dynamics of different classes of functional materials (phthalocyanine, perylene and hexa-peri-hexabenzocoronene derivatives and mixtures of those), all having planar aromatic cores modified with various types of alkyl chains. The planar aromatic systems are known to stack in the solid and the liquid-crystalline state due to p-p interactions forming columnar superstructures with high one-dimensional charge carrier mobility and potential application in photovoltaic devices. The different functionalities attached to the aromatic cores significantly influence the behavior of these systems allowing the experimentalists to modify the structures to fine-tune the desired thermotropic properties or charge carrier mobility. The aim of the presented studies was to understand the interplay between the driving forces causing self-assembly by relating the structural and dynamic information about the investigated systems. The supramolecular organization is investigated by applying 1H solid state NMR recoupling techniques. The results are related with DSC and X-ray scattering data. Detailed information about the site-specific molecular dynamics is gained by recording spinning sideband patterns using 1H-1H and 13C-1H solid state NMR recoupling techniques. The determined dipole-dipole coupling constants are then related with the coupling constants of the respective rigid pairs, thus providing local dynamic order parameters for the respective moieties. The investigations presented reveal that in the crystalline state the preferred arrangement in the columnar stack of discotic molecules modified with alkyl chains is tilted. This leads to characteristic differences in the 1H chemical shifts of otherwise chemically equivalent protons. Introducing branches and increasing the length of the alkyl chains results in lower mesophase transitions and disordered columnar stacks. In the liquid-crystalline state some of the discs lose the tilted orientation, others do not, but all start a rapid rotation about the columnar axis.
Resumo:
Die beiden in dieser Arbeit betrachteten Systeme, wässrige Lösungen von Ionen und ionische Flüssigkeiten, zeigen vielfältige Eigenschaften und Anwendungsmöglichkeiten, im Gegensatz zu anderen Systemen. Man findet sie beinahe überall im normalen Leben (Wasser), oder ihre Bedeutung wächst (ioinische Flüssigkeiten). Der elektronische Anteil und der atomare Anteil wurden getrennt voneinander untersucht und im Zusammenhang analysiert. Mittels dieser Methode konnten die in dem jeweiligen System auftretenden Mechanismen genauer untersucht werden. Diese Methode wird "Multiscale Modeling" genannt, dabei werden die Untereinheiten eines Systems genauer betrachtet, wie in diesem Fall die elektronischen and atomaren Teilsystem. Die Ergebnisse, die aus den jeweiligen Betrachtungen hervorgehen, zeigen, dass, im Falle von hydratisierten Ionen die Wasser-Wasser Wechselwirkungen wesentlich stärker sind als die elektrostatischen Wechselwirkung zwischen Wasser und dem Ion. Anhand der Ergebnisse ergibt sich, dass normale nicht-polarisierbare Modelle ausreichen, um Ionen-Wasser Lösungen zu beschreiben. Im Falle der ionischen Flüssigkeiten betrachten wir die elektronische Ebene mittels sehr genauer post-Hartree-Fock Methoden und DFT, deren Ergebnisse dann mit denen auf molekularer Ebene (mithilfe von CPMD/klassischer MD) in Beziehung gesetzt werden. Die bisherigen Ergebnisse zeigen, dass die Wasserstoff-Brückenbindungen im Fall der ionischen Flüssigkeiten nicht vernachässigt werden können. Weiterhin hat diese Studie herausgefunden, dass die klassischen Kraftfelder die Elektrostatik (Dipol- und Quadrupolmomente) nicht genau genug beschreibt. Die Kombination des mikroskopischen Mechanismus und der molekularen Eigenschaften ist besonders sinnvoll um verschiedene Anhaltspunkte von Simualtionen (z.B. mit klassische Molekular-Dynamik) oder Experimenten zu liefern oder solche zu erklären.