38 resultados para phase separation
Resumo:
In this work, an improved protocol for inverse size-exclusion chromatography (ISEC) was established to assess important pore structural data of porous silicas as stationary phases in packed chromatographic columns. After the validity of the values generated by ISEC was checked by comparison with data obtained from traditional methods like nitrogen sorption at 77 K (Study A), the method could be successfully employed as valuable tool at the development of bonded poly(methacrylate)-coated silicas, while traditional methods generate partially incorrect pore structural information (Study B). Study A: Different mesoporous silicas were converted by a pseudomorphical transition into ordered MCM-41-type silica while maintaining the particle-size and -shape. The essential parameters like specific surface area, average pore diameter and specific pore volume, the pore connectivity from ISEC remained nearly the same which was reflected by the same course of the theoretical plate height vs. linear velocity curves. Study B: In the development of bonded poly(methacrylate)-coated silicas for the reversed phase separation of biopolymers, ISEC was the only method to generate valid pore structural information of the polymer-coated materials. Synthesis procedures were developed to obtain reproducibly covalently bonded poly(methacrylate) coatings with good thermal stability on different base materials, employing as well particulate and monolithic materials.
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.
Resumo:
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. Monte Carlo simulations were performed to study the phase diagram of such rod-polymer mixtures. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. In this thesis the emphasis was on the depletion effects caused by the addition of spheres on the isotropic phase of rod-like particles. Although most of the present experimental studies consider systems close to or beyond the isotropic-nematic transition, the isotropic phase with depletion interactions turns out to be a not less interesting topic. First, the percolation problem was studied in canonical simulations of a system of hard rods and soft spheres, where the amount of depletant was kept low to prevent phase separation of the mixture. The lowering of the percolation threshold seen in experiment is confirmed to be due to the depletion interactions. The local changes in the structure of the fluid of rods, which were measured in the simulations, indicated that the depletion forces enhance local alignment and aggregation of the rods. Then, the phase diagram of isotropic-isotropic demixing of short spherocylinders was calculated using grand canonical ensemble simulations with successive umbrella sampling. Finite size scaling analysis allowed to estimate the location of the critical point. Also, estimates for the interfacial tension between the coexisting isotropic phases and analyses of its power-law behaviour on approach of the critical point are presented. The obtained phase diagram was compared to the predictions of the free volume theory. After an analysis of the bulk, the phase behaviour in confinement was studied. The critical point of gas-liquid demixing is shifted to higher concentrations of rods and smaller concentrations of spheres due to the formation of an orientationally ordered surface film. If the separation between the walls becomes very small, the critical point is shifted back to smaller concentrations of rods because the surface film breaks up. A method to calculate the contact angle of the liquid-gas interface with the wall is introduced and the wetting behaviour on the approach to the critical point is analysed.
Resumo:
Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.
Resumo:
A novel nanosized and addressable sensing platform based on membrane coated plasmonic particles for detection of protein adsorption using dark field scattering spectroscopy of single particles has been established. To this end, a detailed analysis of the deposition of gold nanorods on differently functionalized substrates is performed in relation to various factors (such as the pH, ionic strength, concentration of colloidal suspension, incubation time) in order to find the optimal conditions for obtaining a homogenous distribution of particles at the desired surface number density. The possibility of successfully draping lipid bilayers over the gold particles immobilized on glass substrates depends on the careful adjustment of parameters such as membrane curvature and adhesion properties and is demonstrated with complementary techniques such as phase imaging AFM, fluorescence microscopy (including FRAP) and single particle spectroscopy. The functionality and sensitivity of the proposed sensing platform is unequivocally certified by the resonance shifts of the plasmonic particles that were individually interrogated with single particle spectroscopy upon the adsorption of streptavidin to biotinylated lipid membranes. This new detection approach that employs particles as nanoscopic reporters for biomolecular interactions insures a highly localized sensitivity that offers the possibility to screen lateral inhomogeneities of native membranes. As an alternative to the 2D array of gold nanorods, short range ordered arrays of nanoholes in optically transparent gold films or regular arrays of truncated tetrahedron shaped particles are built by means of colloidal nanolithography on transparent substrates. Technical issues mainly related to the optimization of the mask deposition conditions are successfully addressed such that extended areas of homogenously nanostructured gold surfaces are achieved. Adsorption of the proteins annexin A1 and prothrombin on multicomponent lipid membranes as well as the hydrolytic activity of the phospholipase PLA2 were investigated with classical techniques such as AFM, ellipsometry and fluorescence microscopy. At first, the issues of lateral phase separation in membranes of various lipid compositions and the dependency of the domains configuration (sizes and shapes) on the membrane content are addressed. It is shown that the tendency for phase segregation of gel and fluid phase lipid mixtures is accentuated in the presence of divalent calcium ions for membranes containing anionic lipids as compared to neutral bilayers. Annexin A1 adsorbs preferentially and irreversibly on preformed phosphatidylserine (PS) enriched lipid domains but, dependent on the PS content of the bilayer, the protein itself may induce clustering of the anionic lipids into areas with high binding affinity. Corroborated evidence from AFM and fluorescence experiments confirm the hypothesis of a specifically increased hydrolytic activity of PLA2 on the highly curved regions of membranes due to a facilitated access of lipase to the cleavage sites of the lipids. The influence of the nanoscale gold surface topography on the adhesion of lipid vesicles is unambiguously demonstrated and this reveals, at least in part, an answer for the controversial question existent in the literature about the behavior of lipid vesicles interacting with bare gold substrates. The possibility of formation monolayers of lipid vesicles on chemically untreated gold substrates decorated with gold nanorods opens new perspectives for biosensing applications that involve the radiative decay engineering of the plasmonic particles.
Resumo:
In der vorliegenden Arbeit wurden experimentelle Untersuchungen zu gepfropften Polymerfilmen durchgeführt. Dabei wurden endgepfropfte poly-methyl-methacrylate (PMMA) Bürsten hergestellt durch „grafting from“ Methoden und polystyrol (PS)/ poly-vinyl-methyl-ether (PVME) Polymerfilme gepfropft auf UV sensitiven Oberflächen untersucht. Zur Strukturuntersuchung wurden die hergestellten Systeme wurden mit Rasterkraftmikroskopie (engl.: Surface Probe Microscopy, SPM), Röntgen - und Neutronenreflektivitätsmessungen, sowie mit Röntgenstreuung unter streifenden Einfall (engl.: Grazing Incidence Small Angle X-Ray Scattering, GISAXS) untersucht. rnEs wurde gezeigt, dass ein aus der Transmissionsstreuung bekanntes Model auch für auch für die GISAXS Analyse polydisperser Polymerdomänen und Kolloidsysteme verwendet werden kann. Der maximale Fehler durch die gemachten Näherungen wurde auf < 20% abgeschätzt.rnErgebnisse aus der Strukturanalyse wurden mit mechanischen Filmeigenschaften verknüpft. Dazu wurden mechanische Spannungsexperimente durchgeführt. Hierzu wurden die zu untersuchenden Filme selektiv auf einzelne Mikro-Federbalken-Sensoren (engl.: Micro Cantilever Sensor, MCS) der MCS Arrays aufgebracht. Dies wurde durch Maskierungstechniken und Mikro-Kontaktdrucken bewerkstelligt. rnPhasenübergansexperimente der gepfropften PS/PVME Filme haben gezeigt, dass die Möglichkeit einer Polymer/Polymer Phasenseparation stark von Propfpunktdichte der gebundenen Polymerketten mit der Oberfläche abhängt. PS/PVME Filmsysteme mit hohen Pfropfpunktdichten zeigten keinen Phasenübergang. Bei niedrig gepfropften Filmsystemen waren hingegen Polymer/Polymer Phasenseparationen zu beobachten. Es wurde geschlussfolgert, dass die gepfropften Polymersysteme einen hinreichenden Grad an entropischen Freiheitsgraden benötigen um eine Phasenseparation zu zeigen. Mechanische Spannungsexperimente haben dabei das Verstehen der Phasenseparationsmechanismen möglich gemacht.rnAus Quellexperimenten dichtgepfropfter PMMA Bürsten, wurden Lösungsmittel-Polymer Wechselwirkungsparameter (-Parameter) bestimmt. Dabei wurde festgestellt, dass sich die erhaltenen Parameter aufgrund von Filmbenetzung und entropischen Effekten maßgeblich von den errechneten Bulkwerten unterscheiden. Weiterhin wurden nicht reversible Kettenverschlaufungseffekt beobachtet.
Resumo:
The present work deals with the characterisation of three columnar self-assembled systems, that is, benzene-1,3,5-tricarboxamides, a peripherally thioalkyl-substituted phthalocyanine, and several oligo-(p-phenylenevinylene)s. In order to probe the supramolecular organisation solid-state NMR has been used as the main technique, supported by X-ray measurements, theoretical methods, and thermal analysis. rnrnBenzene-1,3,5-tricarboxamides (BTAs) turned out to be well suited model compounds to study various fundamental supramolecular interactions, such as π-π-interactions, hydrogen bonding, as well as dynamic and steric effects of attached side chains. Six BTAs have been investigated in total, five with a CO-centred amide group bearing different side chains and one with an inverted N-centred amide group. The physical properties of these BTAs have been investigated as a function of temperature. The results indicated that in case of the CO-centred BTAs the stability of the columnar mesophase depends strongly on the nature of the side chains. Further experiments revealed a coplanar orientation of adjacent BTA molecules in the columnar assembly of CO-centred BTAs, whereas the N-centred BTA, showed a deviating not fully coplanar arrangement. These differences were ascribed to distinct hydrogen bonding schemes, involving a parallel alignment of hydrogen bonds in case of CO-centred BTAs and an antiparallel alignment in case of the N-centred counterpart.rnrn The fundamental insights of the supramolecular organisation of BTAs could be partially adapted to an octa-substituted phthalocyanine with thiododecyl moieties. Solid-state NMR in combination with chemical shift calculations determined a tilted herringbone arrangement of phthalocyanine rings in the crystalline phase as well as in the mesophase. Moreover, 1H NMR measurements in the mesophase of this compound suggested an axial rotation of molecules, which is inhibited in the crystalline phase.rnrnAs a third task, the supramolecular assembly of oligo-(p-phenylenevinylene)s of varying length and with different polar head groups have been investigated by a combined X-ray and solid-state NMR study. The results revealed a columnar structure formation of these compounds, being promoted by phase separation of alkyl side chains and aromatic rigid rods. In this system solid-state NMR yielded meaningful insight into the isotropisation process of butoxy and 2-S-methylbutoxy substituted oligo-(p-phenylenevinylene) rods.rn
Resumo:
A thorough investigation was made of the structure-property relation of well-defined statistical, gradient and block copolymers of various compositions. Among the copolymers studied were those which were synthesized using isobornyl acrylate (IBA) and n-butyl acrylate (nBA) monomer units. The copolymers exhibited several unique properties that make them suitable materials for a range of applications. The thermomechanical properties of these new materials were compared to acrylate homopolymers. By the proper choice of the IBA/nBA monomer ratio, it was possible to tune the glass transition temperature of the statistical P(IBA-co-nBA) copolymers. The measured Tg’s of the copolymers with different IBA/nBA monomer ratios followed a trend that fitted well with the Fox equation prediction. While statistical copolymers showed a single glass transition (Tg between -50 and 90 ºC depending on composition), DSC block copolymers showed two Tg’s and the gradient copolymer showed a single, but very broad, glass transition. PMBL-PBA-PMBL triblock copolymers of different composition ratios were also studied and revealed a microphase separated morphology of mostly cylindrical PMBL domains hexagonally arranged in the PBA matrix. DMA studies confirmed the phase separated morphology of the copolymers. Tensile studies showed the linear PMBL-PBA-PMBL triblock copolymers having a relatively low elongation at break that was increased by replacing the PMBL hard blocks with the less brittle random PMBL-r-PMMA blocks. The 10- and 20-arm PBA-PMBL copolymers which were studied revealed even more unique properties. SAXS results showed a mixture of cylindrical PMBL domains hexagonally arranged in the PBA matrix, as well as lamellar. Despite PMBL’s brittleness, the triblock and multi-arm PBA-PMBL copolymers could become suitable materials for high temperature applications due to PMBL’s high glass transition temperature and high thermal stability. The structure-property relation of multi-arm star PBA-PMMA block copolymers was also investigated. Small-angle X-ray scattering revealed a phase separated morphology of cylindrical PMMA domains hexagonally arranged in the PBA matrix. DMA studies found that these materials possess typical elastomeric behavior in a broad range of service temperatures up to at least 250°C. The ultimate tensile strength and the elastic modulus of the 10- and 20-arm star PBA-PMMA block copolymers are significantly higher than those of their 3-arm or linear ABA type counterparts with similar composition, indicating a strong effect of the number of arms on the tensile properties. Siloxane-based copolymers were also studied and one of the main objectives here was to examine the possibility to synthesize trifluoropropyl-containing siloxane copolymers of gradient distribution of trifluoropropyl groups along the chain. DMA results of the PDMS-PMTFPS siloxane copolymers synthesized via simultaneous copolymerization showed that due to the large difference in reactivity rates of 2,4,6-tris(3,3,3-trifluoropropyl)-2,4,6-trimethylcyclotrisiloxane (F) and hexamethylcyclotrisiloxane (D), a copolymer of almost block structure containing only a narrow intermediate fragment with gradient distribution of the component units was obtained. A more dispersed distribution of the trifluoropropyl groups was obtained by the semi-batch copolymerization process, as the DMA results revealed more ‘‘pure gradient type’’ features for the siloxane copolymers which were synthesized by adding F at a controlled rate to the polymerization of the less reactive D. As with trifluoropropyl-containing siloxane copolymers, vinyl-containing polysiloxanes may be converted to a variety of useful polysiloxane materials by chemical modification. But much like the trifluoropropyl-containing siloxane copolymers, as a result of so much difference in the reactivities between the component units 2,4,6-trivinyl-2,4,6-trimethylcyclotrisiloxane (V) and hexamethylcyclotrisiloxane (D), thermal and mechanical properties of the PDMS-PMVS copolymers obtained by simultaneous copolymerization was similar to those of block copolymers. Only the copolymers obtained by semi-batch method showed properties typical for gradient copolymers.
Resumo:
Die Funktionalisierung anorganischer Nanopartikel stellt einen Schlüsselschritt in der Herstellung von Nanokompositen dar. Nanokomposite erzielen ein wachsendes Interesse im Bereich der Polymer- und der Materialwissenschaften, da die Kombination mehrerer Materialien mit unterschiedlichen Eigenschaften, wie etwa die Kombination anorganischer Nanopartikel mit Polymeren, große Synergieeffekte erhoffen lässt.rnrnDer Einbau anorganischer Nanopartikel in polymere Matrixmaterialien zur Verbesserung oder Einführung mechanischer, optischer oder magnetischer Eigenschaften von Polymeren bedarf allerdings der Modifizierung der Oberfläche des anorganischen Materials, um die für die positiven Synergieeffekte essentielle Kompatibilität zwischen Füllstoff und Matrix zu erreichen.rnrnEine Vielzahl anorganischer Partikel ist bereits als wässrige Dispersion erhältlich (SiO2, Al2O3, CeO2, ZrO2, ...). Mehrkomponenten- Lösungsmittelsysteme ermöglichen den Transfer dieser Partikel in eine unpolare Umgebung und gleichzeitig deren Funktionalisierung mit amphiphilen Copolymeren. Aufgrund der reversiblen Schaltbarkeit dieser Lösungsmittelsysteme zwischen einem einphasigen und zweiphasigen Zustand werden die zu Beginn in zwei nichtmischbaren Phasen vorliegenden Reaktionspartner durch Übergang in einen einphasigen Zustand unter homogenen Bedingungen in Kontakt gebracht und durch eine erneute Phasentrennung isoliert.rnEin weiterer Vorteil dieser Lösungsmittelsysteme ist deren Tolerierung funktioneller Gruppen in den verwendeten amphiphilen Copolymeren, welche nicht in Wechselwirkung mit der Partikeloberfläche stehen. Beispielsweise können Amine in den amphiphilen Copolymeren für die Wechselwirkung der funktionalisierten Partikel mit einer Polyurethanmatrix dienen, Alkine können mittels einer 1,3-dipolaren Cycloaddition umgesetzt werden oder aber perfluorierten Seitenketten in den Seitenketten der amphiphilen Copolymere die Kompatibilisierung der funktionalisierten Partikel mit einem perfluorierten Polymer gewährleisten.
Resumo:
In dieser Arbeit wurden Kolloide aus flüssigkristallinen Polymeren dargestellt und untersucht.rnrnDie Methode der Dispersionspolymerisation zur Darstellung von Kolloiden aus flüssigkristallinen Polyacrylaten wurde in unpolare Lösungsmittel adaptiert, umrneine Manipulierbarkeit anisotroper Kolloide durch elektrische Felder zu erreichen.rnDazu wurden ein Gemisch aus THF und Siliconöl als Reaktionsmischung gewähltrnund polysiloxanbasierte Polymere und Copolymere als Stabilisatoren eingesetzt.rnDabei auftretende unerwartete Auswirkungen auf die Mesogenkonfiguration führtenrnzu einer Untersuchung der Abhängigkeit der Mesogenkonfigurationen von der Oberflächenverankerung der Mesogene. Schließlich wurde eine Kontrolle derrnOberfl¨achenverankerung der Mesogene und somit eine Kontrolle der Mesogenkonfigurationen unter Ausnutzung der Eigenschaften flüssigkristallin/nicht flüssigkristalliner Blockcopolymere erreicht. Zu diesem Zweck wurde auch ein neuer Makroinitiator entwickelt. Kleine Kolloide konnten mittels eines elektrischen Feldes gedreht bzw. zu Linien angeordnet werden.rnrnEinige neue Polysiloxane wurden zum Einbau in flüssigkristalline Kolloide viarnMiniemulsion synthetisiert. Sie wurden charakterisiert und in Kolloide überführt. Aufgrund zu hoher Übergangstemperaturen konnten bei den meisten jedoch keine Strukturen aus phasenseparierten Polysiloxane gefunden werden. Die Ausbildung der Strukturen in solchen Kolloiden konnte aber trotzdem verstanden werden.rnrnAus vernetzten Hauptkettenpolymeren sollten aktuierende Kolloide hergestelltrnwerden. Dazu wurde das entsprechende Hauptkettenpolymer hergestellt, charakterisiert und per Miniemulsion in Kolloide überführt. Die dargestellten Kolloide wurden unter dem TEM geheizt und zeigten Formänderungen, die jedoch nicht kontrolliert und noch irreversibel waren.
Resumo:
Funktionelle Materialien sind in einer Vielzahl von Materialklassen wie Polymeren, Biomaterialien, Gläsern, Metallen, Keramiken und Verbundwerkstoffen anzutreffen. Sie besitzen eine spezifische, intrinsische Funktion, welche auf dem zu Grunde liegenden Design der Verbindung beruht. In dieser Dissertation wurden zwei funktionelle Materialien studiert: ein durch Phosphonatadditive mechanisch verstärktes Epoxidharz und protonenleitende Blockcopolymere, welche Potential für den Einsatz in Brennstoffzellen besitzen. Die Materialien wurden vorranging mittels Festkörper Kernspinresonanzspektroskopie (NMR) untersucht, welche sich besonders für die Untersuchung der lokalen Struktur und Dynamik amorpher Polymere eignet.rnrnPhosphonate sind eine neue Klasse sogenannter molekularer Verstärker, die die mechanischen und thermischen Kennzahlen geeigneter Epoxidharze erhöhen. Es wurde eine Reihe von Phosphonatderivaten synthetisiert um systematische den Effekt der chemischen Struktur und des Aushärteprozesses auf die Eigenschaften eines Modellepoxidharzes zu untersuchen. Die Aufklärung des Verstärkungsmechanismus ergab, dass die Phosphonate währen der thermischen Aushärtung des Epoxidharzes die Aminofunktionalitäten des Härters alkylieren. Dies führt zu der Bildung von homogen verteilten, positiven Ladungen auf der Polymerkette, während negative Phosphonatanionen als Gegenionen wirken. Es konnte gezeigt werden, dass die Struktur des Additivs einen entscheidenden Einfluss auf die Eigenschaften des ausgehärteten Epoxidharzes sowie seine Alterung, d.h. den allmählichen Verlust der Verstärkung, hat.rnrnDes Weiteren wurde eine Serie von sulfonierten Blockcopolymeren synthetisiert. Es handelte sich hierbei um Multiblockcopolyimide, wobei die Polymerketten aus einer alternierenden Sequenz von sulfonierten (hydrophilen) und unsulfonierten (hydrophoben) Blöcken bestanden. Diese Polymere bilden nach einem ‚solvent cast‘ Prozess feste, duktile und transparente Membrane. Sulfonierte Blockcopolymermembrane zeigten im Vergleich mit statistisch sulfonierten Vergleichssubstanzen eine erhöhte Leitfähigkeit, sowie eine erhöhte Wasseraufnahme. Dies wurde auf eine bessere Phasenseparation im Festkörper zurückgeführt. Die Morphologie der Filme war eindeutig anisotrop und stark abhängig von der Blocklänge der Polymere. Durch diverse Festkörper-NMR Methoden konnte gezeigt werden, dass die Protonenmobilität in den Membranen von der betrachteten Längenskala abhängig ist und nicht notwendigerweise mit der makroskopisch beobachteten Leitfähigkeit korreliert.
Resumo:
Functional and smart materials have gained large scientific and practical interest in current research and development. The Heusler alloys form an important class of functional materials used in spintronics, thermoelectrics, and for shape memory alloy applications. An important aspect of functional materials is the adaptability of their physical properties. In this work functional polycrystalline bulk and epitaxial thin film Heusler alloys are characterized by means of spectroscopic investigation methods, X-ray magnetic circular dichroism (XMCD) and energy dispersive X-ray analysis (EDX). With EDX the homogeneity of the samples is studied extensively. For some cases of quaternary compounds, for example Co2(MnxTi1−x)Sn and Co2(Mn0.5Dy0.5)Sn, an interesting phase separation in two nearly pure ternary Heusler phases occurs. For these samples the phase separation leads to an improvement of thermoelectric properties. XMCD as the main investigation method was used to study Co2TiZ (Z = Si, Sn, and Sb), Co2(MnxTi1−x)Si, Co2(MnxTi1−x)Ge, Co2Mn(Ga1−xGex), Co2FeAl, Mn2VAl, and Ni2MnGa Heusler compounds. The element-specific magnetic moments are calculated. Also, the spin-resolved unoccupied density of states is determined, for example giving hints for half-metallic ferromagnetism for some Co-based compounds. The systematic change of the magnetic moments and the shift of the Fermi energy is a proof that Heusler alloys are suitable for a controlled tailoring of physical properties. The comparison of the experimental results with theoretical predictions improves the understanding of complex materials needed to optimize functional Heusler alloys.
Resumo:
Computer-Simulationen von Kolloidalen Fluiden in Beschränkten Geometrien Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden, wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa- Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert, untersucht. Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen Pore findet man im Bereich des Phasendiagramms, in dem das System typischerweise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor. Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bereiche der polymerreichen und der kolloidreichen Phase, welche von nun an koexistieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekurven in entsprechenden Experimenten zu erklären. Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum eingeschränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymerreichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen und Strukturen des Janustyps. Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen innerhalb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsentiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid- Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von Kristallkeimen an Wänden verwendet. Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche sich nach einem Quench des Systems aus dem homogenen Zustand in den entmischten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmethode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänengröße beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unterschiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsreichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.
Resumo:
In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned substrate treatment and film preparation method, cholesteric films were obtained, with optical properties that were theoretically predicted and only known from low molecular weight liquid crystals so far. Subsequent polymerization allowed a permanent fixing of the alignment and the fabrication of free standing and insensitive films.rnThe incorporation of inorganic nanorods into the cholesteric host material was mediated with tailored block copolymers, available via controlled radical polymerization methods. In addition to the shape match between the rodlike mesogens of the host and the nanorods it was possible to increase the miscibility of both materials. Nevertheless, the size of the nanorods, in comparison to the mesogens, in these densely packed liquid crystalline phases as well as their long equilibration times were the reasons for phase separation. Nanorods are, in principle, valuable substitutes for organics, but their utilization in cellulosic CLC was not to be combined with a high quality alignment of the cholesteric structure.rnA swelling process of polymerized films in a dye solution or dissolving dyes in non-polymerized CLC was used for incorporation of the organic chromophores. With the first method the CLC could be aligned and polymerized without any disturbance due to dye molecules. The optical properties of dye and CLC were matched, with regard to mirrorless lasing devices. The dye was optically excited and laser emission supported by the cholesteric cavity was obtained. The polarization and wavelength of the emitted radiation as well as its bandwidth, the obtained interference pattern and threshold behavior of the emission proofed the feedback mechanism that was not believed to be realizable in liquid crystalline polymers. rnUtilization of a microfluidic co-flow injection device enabled us to transfer the properties of cellulosic CLC from the planar film shape to spherical micrometer sized particles. The pure material yielded particles with distorted mesogen alignment similar to films prepared by capillary flow. Dilution of the CLC with a solvent that migrated into the carrier phase during particle preparation provided the basis for particles with well ordered areas. rnAlthough cellulose derivatives were known for their liquid crystalline behavior for decades and synthesized in mass production, their application as feedback material was affected by bad optical properties. In comparison to low molar mass compounds, the low degree of order in the CLC phase was the cause. With the improved material, defined lasing emission was shown and characterized. Derivatives of cellulose are desirable materials, because, as a renewable resource, they are available in large amounts for a low price and need only simple derivatization reactions. The fabrication of CLC films with tunable lasing emission, for which this thesis can provide a starting point, is in good agreement with today's requirements of modern technology and its miniaturization.rn
Resumo:
In this thesis, different complex colloids were prepared by the process of solvent evaporation from emulsion droplets (SEED). The term “complex” is used to include both an addressable functionality as well as the heterogeneous nature of the colloids.Firstly, as the SEED process was used throughout the thesis, its mechanism especially in regard to coalescence was investigated,. A wide variety of different techniques was employed to study the coalescence of nanodroplets during the evaporation of the solvent. Techniques such as DLS or FCS turned out not to be suitable methods to determine droplet coalescence because of their dependence on dilution. Thus, other methods were developed. TEM measurements were conducted on mixed polymeric emulsions with the results pointing to an absence of coalescence. However, these results were not quantifiable. FRET measurements on mixed polymeric emulsions also indicated an absence of coalescence. Again the results were not quantifiable. The amount of coalescence taking place was then quantified by the application of DC-FCCS. This method also allowed for measuring coalescence in other processes such as the miniemulsion polymerization or the polycondensation reaction on the interface of the droplets. By simulations it was shown that coalescence is not responsible for the usually observed broad size distribution of the produced particles. Therefore, the process itself, especially the emulsification step, needs to be improved to generate monodisperse colloids.rnThe Janus morphology is probably the best known among the different complex morphologies of nanoparticles. With the help of functional polymers, it was possible to marry click-chemistry to Janus particles. A large library of functional polymers was prepared by copolymerization and subsequent post-functionalization or by ATRP. The polymers were then used to generate Janus particles by the SEED process. Both dually functionalized Janus particles and particles with one functionalized face could be obtained. The latter were used for the quantification of functional groups on the surface of the Janus particles. For this, clickable fluorescent dyes were synthesized. The degree of functionality of the polymers was found to be closely mirrored in the degree of functionality of the surface. Thus, the marriage of click-chemistry to Janus particles was successful.Another complex morphology besides Janus particles are nanocapsules. Stimulus-responsive nanocapsules that show triggered release are a highly demanding and interesting system, as nanocapsules have promising applications in drug delivery and in self-healing materials. To achieve heterogeneity in the polymer shell, the stimulus-responsive block copolymer PVFc-b-PMMA was employed for the preparation of the capsules. The phase separation of the two blocks in the shell of the capsules led to a patchy morphology. These patches could then be oxidized resulting in morphology changes. In addition, swelling occurred because of the hydrophobic to hydrophilic transition of the patches induced by the oxidation. Due to the swelling, an encapsulated payload could diffuse out of the capsules, hence release was achieved.The concept of using block copolymers responsive to one stimulus for the preparation of stimulus-responsive capsules was extended to block copolymers responsive to more than one stimulus. Here, a block copolymer responsive to oxidation and a pH change as well as a block copolymer responsive to a pH change and temperature were studied in detail. The release from the nanocapsules could be regulated by tuning the different stimuli. In addition, by encapsulating stimuli-responsive payloads it was possible to selectively release a payload upon one stimulus but not upon the other one.In conclusion, the approaches taken in the course of this thesis demonstrate the broad applicability and usefulness of the SEED process to generate complex colloids. In addition, the experimental techniques established such as DC-FCCS will provide further insight into other research areas as well.